金字塔视觉变换器 (PVT)
概述
PVT模型是由Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao在 Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions 中提出的。PVT是一种视觉变换器,它利用金字塔结构使其成为密集预测任务的有效骨干。具体来说,它允许使用更细粒度的输入(每个补丁4 x 4像素),同时在加深时缩短变换器的序列长度,从而降低计算成本。此外,还使用了空间缩减注意力(SRA)层,以在学习高分辨率特征时进一步减少资源消耗。
论文的摘要如下:
尽管卷积神经网络(CNNs)在计算机视觉领域取得了巨大成功,但本研究探讨了一种更简单、无卷积的骨干网络,适用于许多密集预测任务。与最近专门为图像分类设计的视觉Transformer(ViT)不同,我们引入了金字塔视觉Transformer(PVT),它克服了将Transformer应用于各种密集预测任务的困难。与当前的最新技术相比,PVT有几个优点。与通常产生低分辨率输出并导致高计算和内存成本的ViT不同,PVT不仅可以在图像的密集分区上进行训练以实现高输出分辨率(这对密集预测很重要),而且还使用渐进式缩小金字塔来减少大特征图的计算。PVT继承了CNN和Transformer的优点,使其成为各种视觉任务的统一骨干网络,无需卷积,可以作为CNN骨干网络的直接替代品。我们通过大量实验验证了PVT,表明它提升了许多下游任务的性能,包括目标检测、实例和语义分割。例如,在参数数量相当的情况下,PVT+RetinaNet在COCO数据集上达到了40.4 AP,超过了ResNet50+RetinNet(36.3 AP)4.1个绝对AP(见图2)。我们希望PVT可以作为像素级预测的替代和有用的骨干网络,并促进未来的研究。
- PVTv1 在 ImageNet-1K 上
模型变体 | 大小 | Acc@1 | 参数 (M) |
---|---|---|---|
PVT-Tiny | 224 | 75.1 | 13.2 |
PVT-Small | 224 | 79.8 | 24.5 |
PVT-Medium | 224 | 81.2 | 44.2 |
PVT-Large | 224 | 81.7 | 61.4 |
PvtConfig
类 transformers.PvtConfig
< source >( image_size: int = 224 num_channels: int = 3 num_encoder_blocks: int = 4 depths: typing.List[int] = [2, 2, 2, 2] sequence_reduction_ratios: typing.List[int] = [8, 4, 2, 1] hidden_sizes: typing.List[int] = [64, 128, 320, 512] patch_sizes: typing.List[int] = [4, 2, 2, 2] strides: typing.List[int] = [4, 2, 2, 2] num_attention_heads: typing.List[int] = [1, 2, 5, 8] mlp_ratios: typing.List[int] = [8, 8, 4, 4] hidden_act: typing.Mapping[str, typing.Callable] = 'gelu' hidden_dropout_prob: float = 0.0 attention_probs_dropout_prob: float = 0.0 initializer_range: float = 0.02 drop_path_rate: float = 0.0 layer_norm_eps: float = 1e-06 qkv_bias: bool = True num_labels: int = 1000 **kwargs )
参数
- image_size (
int
, optional, 默认为 224) — 输入图像的大小 - num_channels (
int
, optional, defaults to 3) — 输入通道的数量。 - num_encoder_blocks (
int
, optional, defaults to 4) — 编码器块的数量(即Mix Transformer编码器中的阶段数)。 - depths (
List[int]
, optional, defaults to[2, 2, 2, 2]
) — 每个编码器块中的层数。 - sequence_reduction_ratios (
List[int]
, 可选, 默认为[8, 4, 2, 1]
) — 每个编码器块中的序列缩减比率。 - hidden_sizes (
List[int]
, 可选, 默认为[64, 128, 320, 512]
) — 每个编码器块的维度。 - patch_sizes (
List[int]
, 可选, 默认为[4, 2, 2, 2]
) — 每个编码器块之前的补丁大小。 - strides (
List[int]
, 可选, 默认为[4, 2, 2, 2]
) — 每个编码器块之前的步幅. - num_attention_heads (
List[int]
, optional, defaults to[1, 2, 5, 8]
) — Transformer编码器每个块中每个注意力层的注意力头数。 - mlp_ratios (
List[int]
, 可选, 默认为[8, 8, 4, 4]
) — 编码器块中Mix FFNs的隐藏层大小与输入层大小的比率。 - hidden_act (
str
或function
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"selu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, optional, 默认为 0.0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, 默认为 0.0) — 注意力概率的丢弃比例。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 - drop_path_rate (
float
, optional, 默认为 0.0) — 用于Transformer编码器块中的随机深度的丢弃概率。 - layer_norm_eps (
float
, optional, defaults to 1e-06) — 层归一化层使用的epsilon值。 - qkv_bias (
bool
, optional, defaults toTrue
) — 是否应该向查询、键和值添加可学习的偏置。 - num_labels (‘int’, optional, defaults to 1000) — 类别数量.
这是用于存储PvtModel配置的配置类。它用于根据指定的参数实例化Pvt模型,定义模型架构。使用默认值实例化配置将产生类似于Xrenya/pvt-tiny-224架构的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import PvtModel, PvtConfig
>>> # Initializing a PVT Xrenya/pvt-tiny-224 style configuration
>>> configuration = PvtConfig()
>>> # Initializing a model from the Xrenya/pvt-tiny-224 style configuration
>>> model = PvtModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
PvtImageProcessor
类 transformers.PvtImageProcessor
< source >( do_resize: bool = True size: typing.Optional[typing.Dict[str, int]] = None resample: Resampling =
参数
- do_resize (
bool
, 可选, 默认为True
) — 是否将图像的(高度,宽度)尺寸调整为指定的(size["height"], size["width"])
。可以在preprocess
方法中通过do_resize
参数覆盖此设置。 - size (
dict
, 可选, 默认为{"height" -- 224, "width": 224}
): 调整大小后输出图像的尺寸。可以通过preprocess
方法中的size
参数进行覆盖。 - resample (
PILImageResampling
, 可选, 默认为Resampling.BILINEAR
) — 如果调整图像大小,则使用的重采样过滤器。可以在preprocess
方法中通过resample
参数覆盖此设置。 - do_rescale (
bool
, 可选, 默认为True
) — 是否通过指定的比例rescale_factor
重新缩放图像。可以在preprocess
方法中通过do_rescale
参数覆盖此设置。 - rescale_factor (
int
或float
, 可选, 默认为1/255
) — 如果重新缩放图像,则使用的缩放因子。可以在preprocess
方法中通过rescale_factor
参数覆盖此值。 - do_normalize (
bool
, 可选, 默认为True
) — 是否对图像进行归一化。可以在preprocess
方法中通过do_normalize
参数进行覆盖。 - image_mean (
float
或List[float]
, 可选, 默认为IMAGENET_DEFAULT_MEAN
) — 如果对图像进行归一化,则使用的均值。这是一个浮点数或与图像通道数长度相同的浮点数列表。可以通过preprocess
方法中的image_mean
参数进行覆盖。 - image_std (
float
或List[float]
, 可选, 默认为IMAGENET_DEFAULT_STD
) — 如果对图像进行归一化,则使用的标准差。这是一个浮点数或与图像通道数长度相同的浮点数列表。可以通过preprocess
方法中的image_std
参数进行覆盖。
构建一个PVT图像处理器。
预处理
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: typing.Optional[bool] = None size: typing.Dict[str, int] = None resample: Resampling = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Union[str, transformers.image_utils.ChannelDimension] =
参数
- 图像 (
ImageInput
) — 要预处理的图像。期望输入单个或批量的图像,像素值范围在0到255之间。如果传入的图像像素值在0到1之间,请设置do_rescale=False
. - do_resize (
bool
, optional, defaults toself.do_resize
) — 是否调整图像大小. - size (
Dict[str, int]
, 可选, 默认为self.size
) — 字典格式为{"height": h, "width": w}
,指定调整大小后输出图像的尺寸。 - resample (
PILImageResampling
filter, optional, defaults toself.resample
) —PILImageResampling
过滤器用于调整图像大小,例如PILImageResampling.BILINEAR
。仅在do_resize
设置为True
时有效。 - do_rescale (
bool
, optional, defaults toself.do_rescale
) — 是否将图像值缩放到 [0 - 1] 之间。 - rescale_factor (
float
, optional, defaults toself.rescale_factor
) — 如果do_rescale
设置为True
,则用于重新缩放图像的重新缩放因子。 - do_normalize (
bool
, 可选, 默认为self.do_normalize
) — 是否对图像进行归一化处理. - image_mean (
float
或List[float]
, 可选, 默认为self.image_mean
) — 如果do_normalize
设置为True
,则使用的图像均值。 - image_std (
float
或List[float]
, 可选, 默认为self.image_std
) — 如果do_normalize
设置为True
,则使用的图像标准差。 - return_tensors (
str
或TensorType
, 可选) — 返回的张量类型。可以是以下之一:- 未设置:返回一个
np.ndarray
列表。 TensorType.TENSORFLOW
或'tf'
:返回一个类型为tf.Tensor
的批次。TensorType.PYTORCH
或'pt'
:返回一个类型为torch.Tensor
的批次。TensorType.NUMPY
或'np'
:返回一个类型为np.ndarray
的批次。TensorType.JAX
或'jax'
:返回一个类型为jax.numpy.ndarray
的批次。
- 未设置:返回一个
- data_format (
ChannelDimension
或str
, 可选, 默认为ChannelDimension.FIRST
) — 输出图像的通道维度格式。可以是以下之一:"channels_first"
或ChannelDimension.FIRST
: 图像格式为 (num_channels, height, width)。"channels_last"
或ChannelDimension.LAST
: 图像格式为 (height, width, num_channels)。- 未设置:使用输入图像的通道维度格式。
- input_data_format (
ChannelDimension
或str
, 可选) — 输入图像的通道维度格式。如果未设置,则从输入图像推断通道维度格式。可以是以下之一:"channels_first"
或ChannelDimension.FIRST
: 图像格式为 (num_channels, height, width)。"channels_last"
或ChannelDimension.LAST
: 图像格式为 (height, width, num_channels)。"none"
或ChannelDimension.NONE
: 图像格式为 (height, width)。
预处理一张图像或一批图像。
PvtForImageClassification
类 transformers.PvtForImageClassification
< source >( config: PvtConfig )
参数
- config (~PvtConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
带有图像分类头的Pvt模型转换器(在[CLS]标记的最终隐藏状态之上的线性层),例如用于ImageNet。
该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( pixel_values: typing.Optional[torch.Tensor] labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见PvtImageProcessor.call()。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算图像分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.ImageClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.ImageClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(PvtConfig)和输入。
-
loss(形状为
(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 分类(或回归,如果 config.num_labels==1)损失。 -
logits(形状为
(batch_size, config.num_labels)
的torch.FloatTensor
)— 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states(
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个阶段的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每个阶段输出的隐藏状态(也称为特征图)。 -
attentions(
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 由torch.FloatTensor
组成的元组(每个层一个)形状为(batch_size, num_heads, patch_size, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
PvtForImageClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, PvtForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("Zetatech/pvt-tiny-224")
>>> model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
PvtModel
类 transformers.PvtModel
< source >( config: PvtConfig )
参数
- config (~PvtConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的Pvt编码器输出原始隐藏状态,没有任何特定的头部。 这个模型是PyTorch torch.nn.Module 的一个子类。使用 它作为常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有事项。
前进
< source >( pixel_values: FloatTensor output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
参数
- pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — 像素值。像素值可以使用AutoImageProcessor获取。详情请参见PvtImageProcessor.call()。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,取决于配置(PvtConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
PvtModel 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoImageProcessor, PvtModel
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]
>>> image_processor = AutoImageProcessor.from_pretrained("Zetatech/pvt-tiny-224")
>>> model = PvtModel.from_pretrained("Zetatech/pvt-tiny-224")
>>> inputs = image_processor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 50, 512]