Qwen2Audio
概述
Qwen2-Audio 是 Qwen 团队推出的新系列大型音频语言模型。Qwen2-Audio 能够接受各种音频信号输入,并根据语音指令进行音频分析或直接文本响应。我们引入了两种不同的音频交互模式:
- 语音聊天:用户可以在无需文本输入的情况下与Qwen2-Audio自由进行语音互动
- 音频分析:用户可以在交互过程中提供音频和文本指令进行分析
它由褚云飞、徐进、杨倩、魏浩杰、魏西平、郭志芳、冷一冲、吕元君、何金正、林俊阳、周畅、周景仁在Qwen2-Audio技术报告中提出。
论文的摘要如下:
我们介绍了Qwen-Audio的最新进展,这是一个名为Qwen2-Audio的大规模音频语言模型,能够接受各种音频信号输入,并根据语音指令进行音频分析或直接文本响应。与复杂的分层标签相比,我们通过利用自然语言提示来简化不同数据和任务的预训练过程,并进一步扩大了数据量。我们提升了Qwen2-Audio的指令跟随能力,并实现了两种不同的音频交互模式:语音聊天和音频分析。在语音聊天模式下,用户可以在没有文本输入的情况下自由与Qwen2-Audio进行语音交互。在音频分析模式下,用户可以在交互过程中提供音频和文本指令进行分析。请注意,我们不使用任何系统提示来在语音聊天和音频分析模式之间切换。Qwen2-Audio能够智能地理解音频中的内容,并遵循语音指令做出适当的响应。例如,在一个同时包含声音、多说话者对话和语音指令的音频片段中,Qwen2-Audio可以直接理解指令并提供对音频的解释和响应。此外,DPO优化了模型在事实性和遵循期望行为方面的表现。根据AIR-Bench的评估结果,Qwen2-Audio在以音频为中心的指令跟随能力测试中优于之前的SOTA,如Gemini-1.5-pro。Qwen2-Audio的开源旨在促进多模态语言社区的进步。
使用提示
Qwen2-Audio-7B
和 Qwen2-Audio-7B-Instruct
可以在 Huggingface Hub 上找到
在下面,我们演示了如何使用Qwen2-Audio-7B-Instruct
进行推理,支持语音聊天和音频分析模式。请注意,我们使用了ChatML格式进行对话,在这个演示中,我们展示了如何利用apply_chat_template
来实现这一目的。
语音聊天推理
在语音聊天模式下,用户无需输入文本即可与Qwen2-Audio自由进行语音互动:
from io import BytesIO
from urllib.request import urlopen
import librosa
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/guess_age_gender.wav"},
]},
{"role": "assistant", "content": "Yes, the speaker is female and in her twenties."},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav"},
]},
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
audios.append(librosa.load(
BytesIO(urlopen(ele['audio_url']).read()),
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to("cuda")
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
音频分析推理
在音频分析中,用户可以同时提供音频和文本指令进行分析:
from io import BytesIO
from urllib.request import urlopen
import librosa
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")
conversation = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
{"type": "text", "text": "What's that sound?"},
]},
{"role": "assistant", "content": "It is the sound of glass shattering."},
{"role": "user", "content": [
{"type": "text", "text": "What can you do when you hear that?"},
]},
{"role": "assistant", "content": "Stay alert and cautious, and check if anyone is hurt or if there is any damage to property."},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/1272-128104-0000.flac"},
{"type": "text", "text": "What does the person say?"},
]},
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
audios.append(
librosa.load(
BytesIO(urlopen(ele['audio_url']).read()),
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to("cuda")
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
批量推理
我们还支持批量推理:
from io import BytesIO
from urllib.request import urlopen
import librosa
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")
conversation1 = [
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"},
{"type": "text", "text": "What's that sound?"},
]},
{"role": "assistant", "content": "It is the sound of glass shattering."},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/f2641_0_throatclearing.wav"},
{"type": "text", "text": "What can you hear?"},
]}
]
conversation2 = [
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/1272-128104-0000.flac"},
{"type": "text", "text": "What does the person say?"},
]},
]
conversations = [conversation1, conversation2]
text = [processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) for conversation in conversations]
audios = []
for conversation in conversations:
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
audios.append(
librosa.load(
BytesIO(urlopen(ele['audio_url']).read()),
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
inputs['input_ids'] = inputs['input_ids'].to("cuda")
inputs.input_ids = inputs.input_ids.to("cuda")
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
Qwen2AudioConfig
类 transformers.Qwen2AudioConfig
< source >( audio_config = None text_config = None audio_token_index = 151646 **kwargs )
这是用于存储Qwen2AudioForConditionalGeneration配置的配置类。它用于根据指定的参数实例化一个Qwen2-Audio模型,定义模型架构。使用默认值实例化配置将产生与Qwen2-Audio类似的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import Qwen2AudioForConditionalGeneration, Qwen2AudioConfig, Qwen2AudioEncoderConfig, Qwen2Config
>>> # Initializing a Qwen2AudioEncoder config
>>> audio_config = Qwen2AudioEncoderConfig()
>>> # Initializing a Qwen2 config
>>> text_config = Qwen2Config()
>>> # Initializing a Qwen2Audio configuration
>>> configuration = Qwen2AudioConfig(audio_config, text_config)
>>> # Initializing a model from the qwen2-audio style configuration
>>> model = Qwen2AudioForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Qwen2AudioConfig
class transformers.Qwen2AudioEncoderConfig
< source >( num_mel_bins = 128 encoder_layers = 32 encoder_attention_heads = 20 encoder_ffn_dim = 5120 encoder_layerdrop = 0.0 d_model = 1280 dropout = 0.0 attention_dropout = 0.0 activation_function = 'gelu' activation_dropout = 0.0 scale_embedding = False init_std = 0.02 max_source_positions = 1500 **kwargs )
参数
- num_mel_bins (
int
, optional, 默认为 128) — 每个输入特征使用的梅尔特征数量。应与Qwen2AudioProcessor
类中使用的值对应。 - encoder_layers (
int
, optional, defaults to 32) — 编码器层数. - encoder_attention_heads (
int
, optional, 默认为 20) — Transformer 编码器中每个注意力层的注意力头数量。 - encoder_ffn_dim (
int
, optional, 默认为 5120) — 编码器中“中间”(通常称为前馈)层的维度。 - encoder_layerdrop (
float
, optional, 默认为 0.0) — 编码器的LayerDrop概率。有关更多详细信息,请参阅[LayerDrop论文](see https://arxiv.org/abs/1909.11556)。 - d_model (
int
, optional, defaults to 1280) — 层的维度. - dropout (
float
, optional, defaults to 0.0) — 嵌入层、编码器和池化器中所有全连接层的dropout概率。 - attention_dropout (
float
, optional, defaults to 0.0) — 注意力概率的丢弃比率。 - activation_function (
str
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - activation_dropout (
float
, optional, defaults to 0.0) — 全连接层内激活函数的丢弃比例。 - scale_embedding (
bool
, optional, defaults toFalse
) — 通过除以 sqrt(d_model) 来缩放嵌入向量。 - init_std (
float
, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - max_source_positions (
int
, optional, 默认为 1500) — 该模型可能使用的对数梅尔滤波器组特征的最大序列长度。
这是用于存储Qwen2AudioEncoder
配置的配置类。它用于根据指定的参数实例化一个Qwen2-Audio音频编码器,定义模型架构。使用默认值实例化配置将产生与Qwen2-Audio架构的音频编码器类似的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import Qwen2AudioEncoderConfig, Qwen2AudioEncoder
>>> # Initializing a Qwen2AudioEncoderConfig
>>> configuration = Qwen2AudioEncoderConfig()
>>> # Initializing a Qwen2AudioEncoder (with random weights)
>>> model = Qwen2AudioEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Qwen2AudioProcessor
类 transformers.Qwen2AudioProcessor
< source >( feature_extractor = 无 tokenizer = 无 chat_template = 无 )
参数
- feature_extractor (WhisperFeatureExtractor, optional) — 特征提取器是一个必需的输入。
- tokenizer (Qwen2TokenizerFast, optional) — 分词器是一个必需的输入。
- chat_template (
Optional[str]
, optional) — 用于格式化对话的Jinja模板。如果未提供,则使用默认的聊天模板。
构建一个Qwen2Audio处理器,它将Qwen2Audio特征提取器和Qwen2Audio分词器封装到一个处理器中。
Qwen2AudioProcessor 提供了 WhisperFeatureExtractor 和 Qwen2TokenizerFast 的所有功能。更多信息请参见
__call__()
和 decode()。
此方法将其所有参数转发给Qwen2TokenizerFast的batch_decode()。请参考该方法的文档字符串以获取更多信息。
此方法将其所有参数转发给Qwen2TokenizerFast的decode()。请参考该方法的文档字符串以获取更多信息。
Qwen2AudioForConditionalGeneration
类 transformers.Qwen2AudioForConditionalGeneration
< source >( config: Qwen2AudioConfig )
参数
- config (Qwen2AudioConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
QWEN2AUDIO模型由一个音频骨干和一个语言模型组成。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: LongTensor = None input_features: FloatTensor = None attention_mask: typing.Optional[torch.Tensor] = None feature_attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.qwen2_audio.modeling_qwen2_audio.Qwen2AudioCausalLMOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- input_features (
torch.FloatTensor
of shape(batch_size, feature_size, feature_sequence_length)
) — Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a.flac
or.wav
audio file into an array of typeList[float]
or anumpy.ndarray
, e.g. via the soundfile library (pip install soundfile
). To prepare the array intoinput_features
, the AutoFeatureExtractor should be used for extracting the mel features, padding and conversion into a tensor of typetorch.FloatTensor
. See call() - attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,则可以选择性地仅输入最后一个decoder_input_ids
(参见past_key_values
)。如果你想改变填充行为,你应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- feature_attention_mask (
torch.Tensor
of shape(batch_size, feature_sequence_length)
) — 用于避免对填充特征索引执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.n_positions - 1]
内。What are position IDs? - past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见
past_key_values
输入)以加速顺序解码。如果使用了
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - 参数 —
labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, 可选): 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略 (掩码),损失仅计算标签在[0, ..., config.vocab_size]
之间的标记。
返回
transformers.models.qwen2_audio.modeling_qwen2_audio.Qwen2AudioCausalLMOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.models.qwen2_audio.modeling_qwen2_audio.Qwen2AudioCausalLMOutputWithPast
或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(Qwen2AudioConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —torch.FloatTensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
attention_mask (
torch.FloatTensor
, 可选) — 注意力掩码,用于更新注意力掩码和位置 ID。
Qwen2AudioForConditionalGeneration 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from io import BytesIO
>>> from urllib.request import urlopen
>>> import librosa
>>> from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
>>> model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B")
>>> prompt = "<|audio_bos|><|AUDIO|><|audio_eos|>Generate the caption in English:"
>>> url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/glass-breaking-151256.mp3"
>>> audio, _ = librosa.load(BytesIO(urlopen(url).read()), sr=self.processor.feature_extractor.sampling_rate)
>>> inputs = processor(text=prompt, audios=audio, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Generate the caption in English: Glass is breaking."