Transformers 文档

变色龙

变色龙

概述

Chameleon模型由META AI Chameleon团队在Chameleon: Mixed-Modal Early-Fusion Foundation Models中提出。Chameleon是一个视觉-语言模型,使用向量量化对图像进行标记,使模型能够生成多模态输出。该模型以图像和文本作为输入,包括交错格式,并生成文本响应。图像生成模块尚未发布。

论文的摘要如下:

我们介绍了Chameleon,这是一个基于早期融合的混合模态模型家族,能够理解和生成任意顺序的图像和文本。我们概述了从初始阶段开始的稳定训练方法、对齐方案以及为早期融合、基于标记的混合模态设置量身定制的架构参数化。这些模型在广泛的任务上进行了评估,包括视觉问答、图像描述、文本生成、图像生成以及长格式混合模态生成。Chameleon展示了广泛且通用的能力,包括在图像描述任务中的最先进性能,在纯文本任务中优于Llama-2,同时与Mixtral 8x7B和Gemini-Pro等模型竞争,并在单一模型中执行非平凡的图像生成。根据人类对新的长格式混合模态生成评估的判断,它还匹配或超过了包括Gemini Pro和GPT-4V在内的更大模型的性能,其中提示或输出包含图像和文本的混合序列。Chameleon标志着在全多模态文档统一建模方面迈出了重要的一步

drawing Chameleon incorporates a vector quantizer module to transform images into discrete tokens. That also enables image generation using an auto-regressive transformer. Taken from the original paper.

该模型由joaoganteRaushanTurganbay贡献。 原始代码可以在这里找到。

使用提示

  • 我们建议用户在计算批量生成时使用padding_side="left",因为它可以带来更准确的结果。只需确保在生成之前设置processor.tokenizer.padding_side = "left"

  • 请注意,Chameleon 是为了安全对齐而调整的。如果模型拒绝回答,请考虑提出一个更具体的问题,而不是一个开放性问题。

  • Chameleon 以聊天格式生成,这意味着生成的文本将始终是“助手的回合”。您可以通过在调用处理器时传递 return_for_text_completion=True 来启用文本补全生成。

[!注意] Transformers中的Chameleon实现使用了一个特殊的图像标记来指示合并图像嵌入的位置。对于这个特殊的图像标记,我们没有添加新的标记,而是使用了保留标记之一:。你必须在提示中添加,放在图像应该嵌入的位置,以确保正确生成。

使用示例

单张图像推理

Chameleon 是一个受控模型,因此请确保拥有访问权限并使用令牌登录到 Hugging Face Hub。 以下是如何加载模型并以半精度(torch.bfloat16)执行推理:

from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests

processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")

# prepare image and text prompt
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
prompt = "What do you see in this image?<image>"

inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True))

多图像推理

Chameleon 可以使用多张图像作为输入进行推理,这些图像可以属于相同的提示或不同的提示(在批量推理中)。以下是您可以如何操作的方法:

from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests

processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")

model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")

# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)

url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)

# Prepare a batched prompt, where the first one is a multi-image prompt and the second is not
prompts = [
    "What do these images have in common?<image><image>",
    "<image>What is shown in this image?"
]

# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16)

# Generate
generate_ids = model.generate(**inputs, max_new_tokens=50)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)

模型优化

使用Bitsandbytes进行量化

模型可以以8位或4位加载,大大减少内存需求,同时保持原始模型的性能。首先确保安装bitsandbytes,pip install bitsandbytes,并且能够访问该库支持的GPU/加速器。

bitsandbytes 正在进行重构,以支持除 CUDA 之外的多种后端。目前,ROCm(AMD GPU)和 Intel CPU 的实现已经成熟,Intel XPU 正在开发中,预计将在 Q4/Q1 支持 Apple Silicon。有关安装说明和最新后端更新,请访问 此链接

我们重视您的反馈,以帮助在正式发布前识别错误!查看这些文档以获取更多详细信息和反馈链接。

只需将上面的代码片段更改为:

from transformers import ChameleonForConditionalGeneration, BitsAndBytesConfig

# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", quantization_config=quantization_config, device_map="cuda")

使用 Flash-Attention 2 和 SDPA 进一步加速生成

模型支持Flash-Attention 2和PyTorch的torch.nn.functional.scaled_dot_product_attention,这些都可以用于优化。加载模型时,SDPA是默认选项,如果你想切换到Flash Attention 2,首先确保安装了flash-attn。关于该包的安装,请参考原始仓库。只需将上面的代码片段更改为:

from transformers import ChameleonForConditionalGeneration

model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    attn_implementation="flash_attention_2"
).to(0)

ChameleonConfig

transformers.ChameleonConfig

< >

( vocab_size = 65536 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = 32 hidden_act = 'silu' max_position_embeddings = 4096 initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 model_parallel_size = 1 swin_norm = False vq_config = None vocabulary_map = None mlp_bias = False **kwargs )

参数

  • vocab_size (int, 可选, 默认为 65536) — 变色龙模型的词汇表大小。定义了调用ChameleonModel时传递的inputs_ids可以表示的不同标记的数量;这包括文本和图像标记。
  • hidden_size (int, optional, 默认为 4096) — 隐藏表示的维度。
  • intermediate_size (int, optional, 默认为 11008) — MLP 表示的维度。
  • num_hidden_layers (int, optional, 默认为 32) — Transformer 解码器中的隐藏层数量。
  • num_attention_heads (int, optional, 默认为 32) — Transformer 解码器中每个注意力层的注意力头数量。
  • num_key_value_heads (int, 可选, 默认为 32) — 这是用于实现分组查询注意力(Grouped Query Attention)的键值头数量。如果 num_key_value_heads=num_attention_heads,模型将使用多头注意力(MHA),如果 num_key_value_heads=1,模型将使用多查询注意力(MQA),否则将使用GQA。在将多头检查点转换为GQA检查点时,每个组的键和值头应通过对该组内所有原始头进行平均池化来构建。更多详细信息请查看[这篇论文](https://arxiv.org/pdf/2305.13245.pdf)。如果未指定,将默认为num_attention_heads`.
  • hidden_act (strfunction, 可选, 默认为 "silu") — 解码器中的非线性激活函数(函数或字符串)。
  • max_position_embeddings (int, optional, 默认为 4096) — 此模型可能使用的最大序列长度。Chameleon 支持最多 4096 个令牌。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • rms_norm_eps (float, optional, defaults to 1e-05) — rms归一化层使用的epsilon值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • pad_token_id (int, optional) — 填充标记ID.
  • bos_token_id (int, optional, 默认为 1) — 流的开始标记 id.
  • eos_token_id (int, optional, 默认为 2) — 流结束标记的ID.
  • tie_word_embeddings (bool, optional, defaults to False) — 是否绑定权重嵌入
  • rope_theta (float, optional, 默认为 10000.0) — RoPE 嵌入的基础周期。
  • rope_scaling (Dict, optional) — Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is {"type": strategy name, "factor": scaling factor}. When using this flag, don’t update max_position_embeddings to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/Localchameleon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions.
  • attention_bias (bool, 默认为 False, 可选, 默认为 False) — 是否在自注意力机制中的查询、键、值和输出投影层中使用偏置。
  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的丢弃比例。
  • model_parallel_size (int, optional, 默认为 1) — 训练模型时使用的分片数量。这将在 qk layernorm 中使用,因为原始的 Chameleon 推理 在这些层中不进行归约,每个等级都有自己的偏差。
  • swin_norm (bool, 可选, 默认为 False) — 使用 Swin Transformer 归一化.
  • vq_config (dict, optional) — 包含VQ-VAE模型配置的ChameleonVQConfig实例。
  • vocabulary_map (dict, optional) — 一个包含来自分词器的词汇映射的字典。用于从图像输入中获取令牌。
  • mlp_bias (bool, 可选, 默认为 False) — 是否在MLP层中的up_proj、down_proj和gate_proj层中使用偏置。

这是用于存储ChameleonModel配置的配置类。它用于根据指定的参数实例化变色龙模型,定义模型架构。使用默认值实例化配置将产生类似于meta/chameleon-7B的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

>>> from transformers import ChameleonModel, ChameleonConfig

>>> # Initializing a chameleon chameleon-7b style configuration
>>> configuration = ChameleonConfig()

>>> # Initializing a model from the chameleon-7b style configuration
>>> model = ChameleonModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

ChameleonVQVAEConfig

transformers.ChameleonVQVAEConfig

< >

( embed_dim: int = 256 num_embeddings: int = 8192 double_latent: bool = False latent_channels: int = 256 resolution: int = 512 in_channels: int = 3 base_channels: int = 128 channel_multiplier: typing.List[int] = [1, 1, 2, 2, 4] num_res_blocks: int = 2 attn_resolutions: typing.List[int] = None dropout: float = 0.0 attn_type: str = 'vanilla' initializer_range = 0.02 **kwargs )

参数

  • embed_dim (int, optional, defaults to 256) — 每个嵌入向量的维度。
  • num_embeddings (int, optional, defaults to 8192) — 代码本嵌入的数量.
  • double_latent (bool, 可选, 默认为 False) — 是否使用双z通道.
  • latent_channels (int, optional, defaults to 256) — 潜在空间的通道数。
  • 分辨率 (int, 可选, 默认为 512) — 输入图像的分辨率。
  • in_channels (int, optional, defaults to 3) — 输入通道的数量。
  • base_channels (int, 可选, 默认为 128) — 基础通道数.
  • channel_multiplier (List[int], 可选, 默认为 [1, 1, 2, 2, 4]) — 每个分辨率的通道乘数。
  • num_res_blocks (int, optional, defaults to 2) — 残差块的数量。
  • attn_resolutions (List[int], optional) — 应用注意力的分辨率。
  • dropout (float, optional, defaults to 0.0) — 丢弃率.
  • attn_type (str, 可选, 默认为 "vanilla") — VQ-GAN编码器中使用的注意力类型。可以是“vanilla”或None.
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。

这是用于存储ChameleonVQModel配置的配置类。它用于根据指定的参数实例化ChameleonVQModel,定义模型架构。 配置对象继承自PretrainedConfig,并可用于控制模型输出。请阅读PretrainedConfig的文档以获取更多信息。使用默认值实例化配置将生成与meta/chameleon-7B的VQModel类似的配置。

ChameleonProcessor

transformers.ChameleonProcessor

< >

( image_processor tokenizer image_seq_length: int = 1024 image_token: str = '' )

参数

  • image_processor (ChameleonImageProcessor) — 图像处理器是一个必需的输入。
  • tokenizer (LlamaTokenizerFast) — 分词器是一个必需的输入。
  • image_seq_length (int, optional, defaults to 1024) — 一张图像嵌入的序列长度。
  • image_token (str, 可选, 默认为 "") — 用于在文本中表示图像的特殊标记。

构建一个Chameleon处理器,它将Chameleon图像处理器和Chameleon分词器封装成一个单一的处理器。

ChameleonProcessor 提供了 ChameleonImageProcessorLlamaTokenizerFast 的所有功能。 更多信息请参见 __call__()decode()

batch_decode

< >

( *args **kwargs )

此方法将其所有参数转发给LlamaTokenizerFast的batch_decode()。请参考该方法的文档字符串以获取更多信息。

解码

< >

( *args **kwargs )

此方法将其所有参数转发给LlamaTokenizerFast的decode()。请参考该方法的文档字符串以获取更多信息。

ChameleonImageProcessor

transformers.ChameleonImageProcessor

< >

( do_resize: bool = True size: typing.Dict[str, int] = None resample: Resampling = 1 do_center_crop: bool = True crop_size: typing.Dict[str, int] = None do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.0078 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_convert_rgb: bool = True **kwargs )

参数

  • do_resize (bool, 可选, 默认为 True) — 是否将图像的(高度,宽度)尺寸调整为指定的 size。可以在 preprocess 方法中被 do_resize 覆盖。
  • size (Dict[str, int] 可选, 默认为 {"shortest_edge" -- 512}): 调整大小后的图像尺寸。图像的最短边将调整为size[“shortest_edge”],最长边将调整以保持输入的宽高比。可以在preprocess方法中通过size覆盖此设置。
  • resample (PILImageResampling, 可选, 默认为 1) — 如果调整图像大小,则使用的重采样过滤器。可以在 preprocess 方法中通过 resample 覆盖此设置。
  • do_center_crop (bool, 可选, 默认为 True) — 是否将图像中心裁剪到指定的 crop_size。可以在 preprocess 方法中通过 do_center_crop 覆盖此设置。
  • crop_size (Dict[str, int] 可选, 默认为 {“height” — 512, “width”: 512}): 应用 center_crop 后输出图像的大小。可以在 preprocess 方法中通过 crop_size 覆盖此设置。
  • do_rescale (bool, 可选, 默认为 True) — 是否通过指定的比例 rescale_factor 来重新缩放图像。可以在 preprocess 方法中被 do_rescale 覆盖。
  • rescale_factor (intfloat, 可选, 默认为 0.0078) — 如果重新缩放图像,则使用的缩放因子。可以在 preprocess 方法中被 rescale_factor 覆盖。
  • do_normalize (bool, 可选, 默认为 True) — 是否对图像进行归一化。可以在 preprocess 方法中通过 do_normalize 进行覆盖。
  • image_mean (floatList[float], 可选, 默认为 [1.0, 1.0, 1.0]) — 如果对图像进行归一化,则使用的均值。这是一个浮点数或与图像通道数长度相同的浮点数列表。可以通过 preprocess 方法中的 image_mean 参数进行覆盖。
  • image_std (floatList[float], 可选, 默认为 [1.0, 1.0, 1.0]) — 如果对图像进行归一化,则使用的标准差。这是一个浮点数或与图像通道数长度相同的浮点数列表。可以在 preprocess 方法中通过 image_std 参数覆盖。 可以在 preprocess 方法中通过 image_std 参数覆盖。
  • do_convert_rgb (bool, optional, defaults to True) — 是否将图像转换为RGB.

构建一个变色龙图像处理器。

预处理

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: bool = None size: typing.Dict[str, int] = None resample: Resampling = None do_center_crop: bool = None crop_size: int = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_convert_rgb: bool = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )

参数

  • 图像 (ImageInput) — 要预处理的图像。期望输入单个或批量的图像,像素值范围在0到255之间。如果传入的图像像素值在0到1之间,请设置 do_rescale=False.
  • do_resize (bool, optional, defaults to self.do_resize) — 是否调整图像大小.
  • size (Dict[str, int], 可选, 默认为 self.size) — 调整大小后的图像尺寸。图像的最短边将调整为size[“shortest_edge”],最长边将调整以保持输入的宽高比。
  • resample (int, 可选, 默认为 self.resample) — 如果调整图像大小,则使用的重采样过滤器。这可以是枚举 PILImageResampling 中的一个。只有在 do_resize 设置为 True 时才会生效。
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — 是否对图像进行中心裁剪。
  • crop_size (Dict[str, int], 可选, 默认为 self.crop_size) — 中心裁剪的大小。仅在 do_center_crop 设置为 True 时有效。
  • do_rescale (bool, optional, defaults to self.do_rescale) — 是否对图像进行重新缩放.
  • rescale_factor (float, optional, defaults to self.rescale_factor) — 如果do_rescale设置为True,则用于重新缩放图像的重新缩放因子。
  • do_normalize (bool, optional, defaults to self.do_normalize) — 是否对图像进行归一化处理。
  • image_mean (floatList[float], 可选, 默认为 self.image_mean) — 用于归一化的图像均值。仅在 do_normalize 设置为 True 时有效。
  • image_std (floatList[float], 可选, 默认为 self.image_std) — 用于归一化的图像标准差。仅在 do_normalize 设置为 True 时有效。
  • do_convert_rgb (bool, 可选, 默认为 self.do_convert_rgb) — 是否将图像转换为RGB.
  • return_tensors (strTensorType, 可选) — 返回的张量类型。可以是以下之一:
    • 未设置:返回一个 np.ndarray 列表。
    • TensorType.TENSORFLOW'tf':返回一个类型为 tf.Tensor 的批次。
    • TensorType.PYTORCH'pt':返回一个类型为 torch.Tensor 的批次。
    • TensorType.NUMPY'np':返回一个类型为 np.ndarray 的批次。
    • TensorType.JAX'jax':返回一个类型为 jax.numpy.ndarray 的批次。
  • data_format (ChannelDimensionstr, 可选, 默认为 ChannelDimension.FIRST) — 输出图像的通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST: 图像格式为 (num_channels, height, width)。
    • "channels_last"ChannelDimension.LAST: 图像格式为 (height, width, num_channels)。
    • 未设置:使用输入图像的通道维度格式。
  • input_data_format (ChannelDimensionstr, 可选) — 输入图像的通道维度格式。如果未设置,则从输入图像推断通道维度格式。可以是以下之一:
    • "channels_first"ChannelDimension.FIRST: 图像格式为 (num_channels, height, width)。
    • "channels_last"ChannelDimension.LAST: 图像格式为 (height, width, num_channels)。
    • "none"ChannelDimension.NONE: 图像格式为 (height, width)。

预处理一张图像或一批图像。

ChameleonVQVAE

transformers.ChameleonVQVAE

< >

( config: ChameleonVQVAEConfig )

参数

  • config (ChameleonVQVAEConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

在Chameleon中用于将图像编码/解码为离散标记的VQ-VAE模型。 该模型遵循了“Make-a-scene: 基于场景的文本到图像生成与人类先验”论文,来自 Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

_forward_unimplemented

< >

( *input: typing.Any )

定义每次调用时执行的计算。

应该被所有子类覆盖。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行已注册的钩子,而后者则默默地忽略它们。

ChameleonModel

transformers.ChameleonModel

< >

( config: ChameleonConfig )

参数

  • config (ChameleonConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
  • config — ChameleonConfig

裸体变色龙模型输出原始隐藏状态,没有任何特定的头部。 此模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

Transformer解码器由config.num_hidden_layers层组成。每一层都是一个ChameleonDecoderLayer

前进

< >

( input_ids: LongTensor = None pixel_values: FloatTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • pixel_values (torch.FloatTensor of shape `(batch_size, num_channels, image_size, image_size)) — 对应于输入图像的张量。像素值可以使用 AutoImageProcessor获取。详情请参见ChameleonImageProcessor.call().
  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    应该始终是一个Cache实例,模型将输出相同的缓存实例。 如果使用了past_key_values,用户可以选择仅输入形状为(batch_size, 1)的最后一个input_ids(那些没有将其过去的键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPast 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(ChameleonConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True 则还包含 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True 则在交叉注意力块中),这些隐藏状态可以用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型每层输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ChameleonModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ChameleonModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("meta/chameleon-7b")
>>> model = ChameleonModel.from_pretrained("meta/chameleon-7b")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

ChameleonForConditionalGeneration

transformers.ChameleonForConditionalGeneration

< >

( config )

参数

  • config (ChameleonConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

Chameleon Model 顶部有一个头,用于输出下一个标记预测的 logits。 该模型继承自 PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法 (如下载或保存、调整输入嵌入的大小、修剪头等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None pixel_values: FloatTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • pixel_values (torch.FloatTensor of shape `(batch_size, num_channels, image_size, image_size)) — 对应于输入图像的张量。像素值可以使用 AutoImageProcessor获取。详情请参见ChameleonImageProcessor.call().
  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    应该始终是一个Cache实例,模型将输出相同的缓存实例。 如果使用了past_key_values,用户可以选择仅输入形状为(batch_size, 1)的最后一个input_ids(那些没有将其过去的键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
  • 参数 — labels (torch.LongTensor of shape (batch_size, sequence_length), 可选): 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略 (掩码),损失仅针对标签在 [0, ..., config.vocab_size] 之间的标记计算。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(ChameleonConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ChameleonForConditionalGeneration 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image

>>> model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16)
>>> processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")

>>> prompt = "I used to know a lot about constellations when I was younger, but as I grew older, I forgot most of what I knew. These are the only two constellations that I really remember now.<image><image>I would like for you to tell me about 3 more constellations and give me a little bit of history about the constellation."
>>> image = Image.open(requests.get("https://nineplanets.org/wp-content/uploads/2020/12/the-big-dipper-1.jpg", stream=True).raw)
>>> image_2 = Image.open(requests.get("https://www.kxan.com/wp-content/uploads/sites/40/2020/10/ORION.jpg", stream=True).raw)

>>> inputs = processor(images=[image, image_2], text=prompt, return_tensors="pt").to(model.device, torch.bfloat16)

>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
< > Update on GitHub