Transformers 文档

AltCLIP

AltCLIP

概述

AltCLIP模型由Zhongzhi Chen、Guang Liu、Bo-Wen Zhang、Fulong Ye、Qinghong Yang、Ledell Wu在AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities中提出。AltCLIP(在CLIP中改变语言编码器)是一个在多种图像-文本和文本-文本对上训练的神经网络。通过将CLIP的文本编码器替换为预训练的多语言文本编码器XLM-R,我们可以在几乎所有任务上获得与CLIP非常接近的性能,并扩展了原始CLIP的能力,如多语言理解。

论文的摘要如下:

在这项工作中,我们提出了一种概念上简单且有效的方法来训练一个强大的双语多模态表示模型。 从OpenAI发布的预训练多模态表示模型CLIP开始,我们将其文本编码器替换为预训练的多语言文本编码器XLM-R,并通过由教师学习和对比学习组成的两阶段训练方案对齐了两种语言和图像表示。我们通过对广泛任务的评估验证了我们的方法。我们在包括ImageNet-CN、Flicker30k-CN和COCO-CN在内的一系列任务上设定了新的最先进性能。此外,我们在几乎所有任务上都获得了与CLIP非常接近的性能,这表明可以简单地更改CLIP中的文本编码器以扩展功能,例如多语言理解。

该模型由jongjyh贡献。

使用提示和示例

AltCLIP的使用与CLIP非常相似。CLIP的区别在于文本编码器。请注意,我们使用双向注意力而不是因果注意力,并且我们使用XLM-R中的[CLS]标记来表示文本嵌入。

AltCLIP 是一个多模态视觉和语言模型。它可以用于图像-文本相似度和零样本图像分类。AltCLIP 使用类似 ViT 的 transformer 来获取视觉特征,并使用双向语言模型来获取文本特征。然后,文本和视觉特征都被投影到一个具有相同维度的潜在空间。投影后的图像和文本特征之间的点积被用作相似度分数。

为了将图像输入到Transformer编码器中,每张图像被分割成一系列固定大小的不重叠的补丁,然后进行线性嵌入。添加一个[CLS]标记作为整个图像的表示。作者还添加了绝对位置嵌入,并将生成的向量序列输入到标准的Transformer编码器中。CLIPImageProcessor可以用于调整图像大小(或重新缩放)并对图像进行归一化处理。

AltCLIPProcessorCLIPImageProcessorXLMRobertaTokenizer 封装到一个实例中,以便同时编码文本和准备图像。以下示例展示了如何使用 AltCLIPProcessorAltCLIPModel 获取图像-文本相似度分数。

>>> from PIL import Image
>>> import requests

>>> from transformers import AltCLIPModel, AltCLIPProcessor

>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AltCLIPProcessor.from_pretrained("BAAI/AltCLIP")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)

>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities

该模型基于CLIPModel,您可以像使用原始CLIP一样使用它。

AltCLIPConfig

transformers.AltCLIPConfig

< >

( text_config = None vision_config = None projection_dim = 768 logit_scale_init_value = 2.6592 **kwargs )

参数

  • text_config (dict, 可选) — 用于初始化 AltCLIPTextConfig 的配置选项字典.
  • vision_config (dict, optional) — 用于初始化AltCLIPVisionConfig的配置选项字典。
  • projection_dim (int, optional, 默认为 768) — 文本和视觉投影层的维度。
  • logit_scale_init_value (float, optional, 默认为 2.6592) — logit_scale 参数的初始值。默认值按照原始 CLIP 实现使用。
  • kwargs (可选) — 关键字参数字典。

这是用于存储AltCLIPModel配置的配置类。它用于根据指定的参数实例化一个AltCLIP模型,定义模型架构。使用默认值实例化配置将产生与AltCLIP BAAI/AltCLIP架构类似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import AltCLIPConfig, AltCLIPModel

>>> # Initializing a AltCLIPConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPConfig()

>>> # Initializing a AltCLIPModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

>>> # We can also initialize a AltCLIPConfig from a AltCLIPTextConfig and a AltCLIPVisionConfig

>>> # Initializing a AltCLIPText and AltCLIPVision configuration
>>> config_text = AltCLIPTextConfig()
>>> config_vision = AltCLIPVisionConfig()

>>> config = AltCLIPConfig.from_text_vision_configs(config_text, config_vision)

from_text_vision_configs

< >

( text_config: AltCLIPTextConfig vision_config: AltCLIPVisionConfig **kwargs ) AltCLIPConfig

返回

AltCLIPConfig

配置对象的一个实例

从altclip文本模型配置和altclip视觉模型配置实例化一个AltCLIPConfig(或派生类)。

AltCLIPTextConfig

transformers.AltCLIPTextConfig

< >

( vocab_size = 250002 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 514 type_vocab_size = 1 initializer_range = 0.02 initializer_factor = 0.02 layer_norm_eps = 1e-05 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True project_dim = 768 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 250002) — AltCLIP 模型的词汇表大小。定义了调用 AltCLIPTextModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, 可选, 默认为 1024) — 编码器层和池化层的维度。
  • num_hidden_layers (int, optional, 默认为 24) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 16) — Transformer编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, 默认为 4096) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的dropout概率。
  • attention_probs_dropout_prob (float, optional, defaults to 0.1) — 注意力概率的丢弃比例。
  • max_position_embeddings (int, optional, 默认为 514) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 1) — 调用 AltCLIPTextModel 时传递的 token_type_ids 的词汇大小
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • initializer_factor (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的因子(应保持为1,内部用于初始化测试)。
  • layer_norm_eps (float, optional, 默认为 1e-05) — 层归一化层使用的 epsilon 值。
  • pad_token_id (int, 可选, 默认为 1) — 填充 token 的 id.
  • bos_token_id (int, optional, 默认为 0) — beginning-of-sequence 标记的 id.
  • eos_token_id (Union[int, List[int]], optional, 默认为 2) — 结束序列标记的ID。可选地,使用列表来设置多个结束序列标记。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute", "relative_key", "relative_key_query" 中的一个。对于 位置嵌入,使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。 有关 "relative_key_query" 的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 方法 4.
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • project_dim (int, 可选, 默认为 768) — 教师模型在映射层之前的维度。

这是用于存储AltCLIPTextModel配置的配置类。它用于根据指定的参数实例化一个AltCLIP文本模型,定义模型架构。使用默认值实例化配置将产生与AltCLIP BAAI/AltCLIP架构相似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import AltCLIPTextModel, AltCLIPTextConfig

>>> # Initializing a AltCLIPTextConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPTextConfig()

>>> # Initializing a AltCLIPTextModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPTextModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

AltCLIPVisionConfig

transformers.AltCLIPVisionConfig

< >

( hidden_size = 768 intermediate_size = 3072 projection_dim = 512 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 image_size = 224 patch_size = 32 hidden_act = 'quick_gelu' layer_norm_eps = 1e-05 attention_dropout = 0.0 initializer_range = 0.02 initializer_factor = 1.0 **kwargs )

参数

  • hidden_size (int, 可选, 默认为 768) — 编码器层和池化层的维度。
  • intermediate_size (int, optional, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • projection_dim (int, optional, 默认为 512) — 文本和视觉投影层的维度。
  • num_hidden_layers (int, optional, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。
  • num_channels (int, optional, 默认为 3) — 输入通道的数量。
  • image_size (int, optional, 默认为 224) — 每张图片的大小(分辨率)。
  • patch_size (int, optional, defaults to 32) — 每个补丁的大小(分辨率)。
  • hidden_act (strfunction, 可选, 默认为 "quick_gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""selu""gelu_new" "quick_gelu"
  • layer_norm_eps (float, optional, defaults to 1e-05) — 层归一化层使用的epsilon值。
  • attention_dropout (float, optional, 默认为 0.0) — 注意力概率的丢弃比率。
  • initializer_range (float, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • initializer_factor (float, 可选, 默认为 1.0) — 用于初始化所有权重矩阵的因子(应保持为1,内部用于初始化测试)。

这是用于存储AltCLIPModel配置的配置类。它用于根据指定的参数实例化一个AltCLIP模型,定义模型架构。使用默认值实例化配置将产生与AltCLIP BAAI/AltCLIP架构类似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import AltCLIPVisionConfig, AltCLIPVisionModel

>>> # Initializing a AltCLIPVisionConfig with BAAI/AltCLIP style configuration
>>> configuration = AltCLIPVisionConfig()

>>> # Initializing a AltCLIPVisionModel (with random weights) from the BAAI/AltCLIP style configuration
>>> model = AltCLIPVisionModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

AltCLIPProcessor

transformers.AltCLIPProcessor

< >

( image_processor = 无 tokenizer = 无 )

参数

构建一个AltCLIP处理器,它将CLIP图像处理器和XLM-Roberta分词器封装到一个单一的处理器中。

AltCLIPProcessor 提供了 CLIPImageProcessorXLMRobertaTokenizerFast 的所有功能。更多信息请参见 __call__()decode()

batch_decode

< >

( *args **kwargs )

此方法将其所有参数转发给XLMRobertaTokenizerFast的batch_decode()。 请参考此方法的文档字符串以获取更多信息。

解码

< >

( *args **kwargs )

此方法将其所有参数转发给XLMRobertaTokenizerFast的decode()。请参考此方法的文档字符串以获取更多信息。

AltCLIPModel

transformers.AltCLIPModel

< >

( config: AltCLIPConfig )

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.Tensor] = None return_loss: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) transformers.models.altclip.modeling_altclip.AltCLIPOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。默认情况下,如果您提供了填充,它将被忽略。可以使用 AutoImageProcessor获取像素值。详情请参见CLIPImageProcessor.call().
  • return_loss (bool, optional) — 是否返回对比损失。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • interpolate_pos_encoding (bool, optional, defaults False) — 是否插值预训练的位置编码.
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.models.altclip.modeling_altclip.AltCLIPOutputtuple(torch.FloatTensor)

一个 transformers.models.altclip.modeling_altclip.AltCLIPOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置()和输入而定的各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当 return_lossTrue 时返回) — 图像-文本相似度的对比损失。
  • logits_per_image (torch.FloatTensor 形状为 (image_batch_size, text_batch_size)) — image_embedstext_embeds 之间的缩放点积分数。这表示图像-文本相似度分数。
  • logits_per_text (torch.FloatTensor 形状为 (text_batch_size, image_batch_size)) — text_embedsimage_embeds 之间的缩放点积分数。这表示文本-图像相似度分数。
  • text_embeds (torch.FloatTensor 形状为 (batch_size, output_dim) — 通过将投影层应用于 AltCLIPTextModel 的池化输出获得的文本嵌入。
  • image_embeds (torch.FloatTensor 形状为 (batch_size, output_dim) — 通过将投影层应用于 AltCLIPVisionModel 的池化输出获得的图像嵌入。
  • text_model_output (BaseModelOutputWithPooling) — AltCLIPTextModel 的输出。
  • vision_model_output (BaseModelOutputWithPooling) — AltCLIPVisionModel 的输出。

AltCLIPModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPModel

>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
...     text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities

get_text_features

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None token_type_ids = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) 文本特征 (torch.FloatTensor 形状为 (batch_size, output_dim)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

文本特征 (torch.FloatTensor 形状为 (batch_size, output_dim)

通过将投影层应用于AltCLIPTextModel的池化输出获得的文本嵌入。

AltCLIPModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoProcessor, AltCLIPModel

>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)

get_image_features

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) 图像特征 (torch.FloatTensor 形状为 (batch_size, output_dim)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。默认情况下,如果您提供了填充,它将被忽略。可以使用 AutoImageProcessor获取像素值。详情请参见CLIPImageProcessor.call().
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • interpolate_pos_encoding (bool, 可选, 默认 False) — 是否插值预训练的位置编码.
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

图像特征 (torch.FloatTensor 形状为 (batch_size, output_dim)

通过将投影层应用于AltCLIPVisionModel的池化输出获得的图像嵌入。

AltCLIPModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPModel

>>> model = AltCLIPModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)

AltCLIPTextModel

class transformers.AltCLIPTextModel

< >

( config )

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndProjectiontuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndProjectiontuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndProjection 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置()和输入的各种元素。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor 形状为 (batch_size, hidden_size)) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一个句子预测(分类)目标进行训练的。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。

  • projection_state (tuple(torch.FloatTensor), 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组形状为 (batch_size,config.project_dim)

    投影层之前的文本嵌入,用于模拟教师编码器的最后一个隐藏状态。

AltCLIPTextModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoProcessor, AltCLIPTextModel

>>> model = AltCLIPTextModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")

>>> texts = ["it's a cat", "it's a dog"]

>>> inputs = processor(text=texts, padding=True, return_tensors="pt")

>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output  # pooled CLS states

AltCLIPVisionModel

transformers.AltCLIPVisionModel

< >

( config: AltCLIPVisionConfig )

前进

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None interpolate_pos_encoding: bool = False return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

参数

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。默认情况下,如果您提供填充,它将被忽略。可以使用 AutoImageProcessor获取像素值。有关详细信息,请参见CLIPImageProcessor.call().
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • interpolate_pos_encoding (bool, optional, defaults False) — 是否插值预训练的位置编码.
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置()和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor 形状为 (batch_size, hidden_size)) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一个句子预测(分类)目标训练的。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力权重在注意力softmax之后,用于计算自注意力头中的加权平均值。

AltCLIPVisionModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AltCLIPVisionModel

>>> model = AltCLIPVisionModel.from_pretrained("BAAI/AltCLIP")
>>> processor = AutoProcessor.from_pretrained("BAAI/AltCLIP")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(images=image, return_tensors="pt")

>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output  # pooled CLS states
< > Update on GitHub