XLM-RoBERTa
概述
XLM-RoBERTa模型由Alexis Conneau、Kartikay Khandelwal、Naman Goyal、Vishrav Chaudhary、Guillaume Wenzek、Francisco Guzmán、Edouard Grave、Myle Ott、Luke Zettlemoyer和Veselin Stoyanov在《大规模无监督跨语言表示学习》中提出。该模型基于Facebook于2019年发布的RoBERTa模型。它是一个大型多语言语言模型,使用了2.5TB经过过滤的CommonCrawl数据进行训练。
论文的摘要如下:
本文展示了大规模预训练多语言语言模型在各种跨语言迁移任务中带来的显著性能提升。我们基于一百种语言训练了一个基于Transformer的掩码语言模型,使用了超过两TB的过滤后的CommonCrawl数据。我们的模型,称为XLM-R,在各种跨语言基准测试中显著优于多语言BERT(mBERT),包括在XNLI上平均准确率提高了+13.8%,在MLQA上平均F1分数提高了+12.3%,在NER上平均F1分数提高了+2.1%。XLM-R在低资源语言上表现尤为出色,在XNLI准确率上,斯瓦希里语提高了11.8%,乌尔都语提高了9.2%,相比之前的XLM模型。我们还详细评估了实现这些提升所需的关键因素,包括(1)正向迁移与容量稀释之间的权衡,以及(2)大规模下高资源和低资源语言的性能。最后,我们首次展示了在不牺牲单语言性能的情况下进行多语言建模的可能性;XLM-R在GLUE和XNLI基准测试中与强大的单语言模型相比非常有竞争力。我们将公开XLM-R的代码、数据和模型。
使用提示
- XLM-RoBERTa 是一个在100种不同语言上训练的多语言模型。与一些XLM多语言模型不同,它不需要
lang
张量来理解使用的是哪种语言,并且应该能够从输入ID中确定正确的语言。 - 在XLM方法上使用RoBERTa技巧,但不使用翻译语言建模目标。它仅对来自一种语言的句子使用掩码语言建模。
资源
以下是官方 Hugging Face 和社区(由🌎表示)提供的资源列表,帮助您开始使用 XLM-RoBERTa。如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将对其进行审核!理想情况下,资源应展示一些新内容,而不是重复现有资源。
- 一篇关于如何在AWS上使用Habana Gaudi对XLM RoBERTa进行多类分类微调的博客文章
- XLMRobertaForSequenceClassification 由这个 示例脚本 和 笔记本 支持。
- TFXLMRobertaForSequenceClassification 由这个 示例脚本 和 笔记本 支持。
- FlaxXLMRobertaForSequenceClassification 由这个 示例脚本 和 笔记本 支持。
- 文本分类章节,来自🤗 Hugging Face任务指南。
- 文本分类任务指南
- XLMRobertaForTokenClassification 由这个 示例脚本 和 笔记本 支持。
- TFXLMRobertaForTokenClassification 由这个 示例脚本 和 笔记本 支持。
- FlaxXLMRobertaForTokenClassification 由这个 示例脚本 支持。
- Token classification 🤗 Hugging Face 课程的章节。
- Token分类任务指南
- XLMRobertaForCausalLM 由这个 示例脚本 和 笔记本 支持。
- Causal language modeling 🤗 Hugging Face 任务指南的章节。
- 因果语言建模任务指南
- XLMRobertaForMaskedLM 由这个 示例脚本 和 笔记本 支持。
- TFXLMRobertaForMaskedLM 由这个 示例脚本 和 笔记本 支持。
- FlaxXLMRobertaForMaskedLM 由这个 示例脚本 和 笔记本 支持。
- Masked language modeling 🤗 Hugging Face 课程的章节。
- Masked language modeling
- XLMRobertaForQuestionAnswering 由这个 示例脚本 和 笔记本 支持。
- TFXLMRobertaForQuestionAnswering 由这个 示例脚本 和 笔记本 支持。
- FlaxXLMRobertaForQuestionAnswering 由这个 示例脚本 支持。
- Question answering 章节来自 🤗 Hugging Face 课程。
- 问答任务指南
多项选择
- XLMRobertaForMultipleChoice 由这个 示例脚本 和 笔记本 支持。
- TFXLMRobertaForMultipleChoice 由这个 示例脚本 和 笔记本 支持。
- 多项选择任务指南
🚀 部署
- 一篇关于如何在Deploy Serverless XLM RoBERTa on AWS Lambda的博客文章。
此实现与RoBERTa相同。有关使用示例以及输入和输出的相关信息,请参阅RoBERTa的文档。
XLMRobertaConfig
类 transformers.XLMRobertaConfig
< source >( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 30522) — XLM-RoBERTa 模型的词汇表大小。定义了调用 XLMRobertaModel 或 TFXLMRobertaModel 时传递的inputs_ids
可以表示的不同标记的数量。 - hidden_size (
int
, optional, 默认为 768) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, optional, 默认为 12) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int
, optional, defaults to 12) — Transformer编码器中每个注意力层的注意力头数。 - intermediate_size (
int
, optional, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。 - hidden_act (
str
或Callable
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - hidden_dropout_prob (
float
, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, 默认为 0.1) — 注意力概率的丢弃比例。 - max_position_embeddings (
int
, optional, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024 或 2048)。 - type_vocab_size (
int
, 可选, 默认为 2) — 调用 XLMRobertaModel 或 TFXLMRobertaModel 时传递的token_type_ids
的词汇大小。 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-12) — 层归一化层使用的epsilon值。 - position_embedding_type (
str
, 可选, 默认为"absolute"
) — 位置嵌入的类型。选择"absolute"
,"relative_key"
,"relative_key_query"
中的一个。对于 位置嵌入,使用"absolute"
。有关"relative_key"
的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。 有关"relative_key_query"
的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 方法 4. - is_decoder (
bool
, optional, defaults toFalse
) — 模型是否用作解码器。如果为False
,则模型用作编码器。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True
时相关。 - classifier_dropout (
float
, optional) — 分类头的丢弃比率。
这是用于存储XLMRobertaModel或TFXLMRobertaModel配置的配置类。它用于根据指定的参数实例化一个XLM-RoBERTa模型,定义模型架构。使用默认值实例化配置将产生类似于XLMRoBERTa FacebookAI/xlm-roberta-base架构的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import XLMRobertaConfig, XLMRobertaModel
>>> # Initializing a XLM-RoBERTa FacebookAI/xlm-roberta-base style configuration
>>> configuration = XLMRobertaConfig()
>>> # Initializing a model (with random weights) from the FacebookAI/xlm-roberta-base style configuration
>>> model = XLMRobertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
XLMRobertaTokenizer
类 transformers.XLMRobertaTokenizer
< source >( vocab_file bos_token = '' eos_token = '' sep_token = '' cls_token = '' unk_token = '
参数
- vocab_file (
str
) — 词汇表文件的路径。 - bos_token (
str
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是
cls_token
。 - eos_token (
str
, optional, defaults to"</s>"
) — The end of sequence token.在使用特殊标记构建序列时,这不是用于序列结束的标记。 使用的标记是
sep_token
。 - sep_token (
str
, 可选, 默认为""
) — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。 - cls_token (
str
, 可选, 默认为"
) — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。" - unk_token (
str
, optional, defaults to"
) — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。" - pad_token (
str
, optional, defaults to"
) — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。" - mask_token (
str
, 可选, 默认为"
) — 用于屏蔽值的标记。这是在训练此模型时用于屏蔽语言建模的标记。这是模型将尝试预测的标记。" - sp_model_kwargs (
dict
, optional) — Will be passed to theSentencePieceProcessor.__init__()
method. The Python wrapper for SentencePiece can be used, among other things, to set:-
enable_sampling
: 启用子词正则化。 -
nbest_size
: 用于unigram的采样参数。对于BPE-Dropout无效。nbest_size = {0,1}
: No sampling is performed.nbest_size > 1
: samples from the nbest_size results.nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
-
alpha
: 用于单字采样的平滑参数,以及BPE-dropout的合并操作丢弃概率。
-
- sp_model (
SentencePieceProcessor
) — 用于每次转换(字符串、标记和ID)的SentencePiece处理器。
改编自 RobertaTokenizer 和 XLNetTokenizer。基于 SentencePiece。
此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。一个XLM-RoBERTa序列具有以下格式:
- 单一序列:
X - 序列对:
AB
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model
方法添加特殊标记时,会调用此方法。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递给序列对分类任务的两个序列中创建一个掩码。XLM-RoBERTa不使用标记类型ID,因此返回一个零列表。
XLMRobertaTokenizerFast
类 transformers.XLMRobertaTokenizerFast
< source >( vocab_file = 无 tokenizer_file = 无 bos_token = '' eos_token = '' sep_token = '' cls_token = '' unk_token = '
参数
- vocab_file (
str
) — 词汇表文件的路径。 - bos_token (
str
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是
cls_token
。 - eos_token (
str
, optional, defaults to"</s>"
) — The end of sequence token.在使用特殊标记构建序列时,这不是用于序列结束的标记。 使用的标记是
sep_token
。 - sep_token (
str
, 可选, 默认为""
) — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。 - cls_token (
str
, 可选, 默认为"
) — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。" - unk_token (
str
, optional, defaults to"
) — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。" - pad_token (
str
, optional, defaults to"
) — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。" - mask_token (
str
, 可选, 默认为"
) — 用于屏蔽值的标记。这是在训练此模型时使用的标记,用于屏蔽语言建模。这是模型将尝试预测的标记。" - additional_special_tokens (
List[str]
, optional, defaults to["
) — 分词器使用的额外特殊标记。NOTUSED", "NOTUSED"]
构建一个“快速”的XLM-RoBERTa分词器(由HuggingFace的tokenizers库支持)。改编自 RobertaTokenizer和XLNetTokenizer。基于 BPE。
这个分词器继承自PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。一个XLM-RoBERTa序列具有以下格式:
- 单一序列:
X - 序列对:
AB
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递给序列对分类任务的两个序列中创建一个掩码。XLM-RoBERTa不使用标记类型ID,因此返回一个零列表。
XLMRobertaModel
类 transformers.XLMRobertaModel
< source >( config add_pooling_layer = True )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的XLM-RoBERTa模型转换器,输出原始隐藏状态,顶部没有任何特定的头部。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
该模型可以表现为编码器(仅具有自注意力)以及解码器,在这种情况下,在自注意力层之间添加了一层交叉注意力,遵循了Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser和Illia Polosukhin在Attention is all you need中描述的架构。
要作为解码器使用,模型需要使用配置中的is_decoder
参数初始化为True
。要在Seq2Seq模型中使用,模型需要同时使用is_decoder
参数和add_cross_attention
参数初始化为True
;然后在前向传递中需要输入encoder_hidden_states
。
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
or(batch_size, sequence_length, target_length)
, optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.如果使用了
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - use_cache (
bool
, 可选) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一个句子预测(分类)目标进行训练的。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力softmax之后,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
和config.add_cross_attention=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力softmax之后,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) — 由tuple(torch.FloatTensor)
组成的元组,长度为config.n_layers
,每个元组包含2个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且如果config.is_encoder_decoder=True
则还包含2个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预计算的隐藏状态(自注意力块中的键和值,并且如果
config.is_encoder_decoder=True
则还包含交叉注意力块中的键和值),可用于(参见past_key_values
输入)以加速顺序解码。
XLMRobertaModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, XLMRobertaModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = XLMRobertaModel.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
XLMRobertaForCausalLM
类 transformers.XLMRobertaForCausalLM
< source >( config )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM-RoBERTa 模型,顶部带有language modeling
头,用于CLM微调。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Tuple[typing.Tuple[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算从左到右语言建模损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的 标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记计算 - past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.如果使用了
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - use_cache (
bool
, 可选) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个标记的预测)。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 由长度为config.n_layers
的torch.FloatTensor
元组组成的元组,每个元组包含自注意力和交叉注意力层的缓存键, 值状态,如果模型用于编码器-解码器设置。仅在config.is_decoder = True
时相关。包含预计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。
XLMRobertaForCausalLM 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, XLMRobertaForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
>>> config = AutoConfig.from_pretrained("FacebookAI/roberta-base")
>>> config.is_decoder = True
>>> model = XLMRobertaForCausalLM.from_pretrained("FacebookAI/roberta-base", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
XLMRobertaForMaskedLM
类 transformers.XLMRobertaForMaskedLM
< source >( config )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM-RoBERTa 模型,顶部带有语言建模
头。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码), 损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记进行计算 - kwargs (
Dict[str, any]
, 可选, 默认为{}
) — 用于隐藏已被弃用的旧参数.
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 掩码语言建模(MLM)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
XLMRobertaForMaskedLM 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, XLMRobertaForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = XLMRobertaForMaskedLM.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.1
XLMRobertaForSequenceClassification
类 transformers.XLMRobertaForSequenceClassification
< source >( config )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM-RoBERTa 模型转换器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于 GLUE 任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
XLMRobertaForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, XLMRobertaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = XLMRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = XLMRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.08
多标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, XLMRobertaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = XLMRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = XLMRobertaForSequenceClassification.from_pretrained(
... "cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
XLMRobertaForMultipleChoice
类 transformers.XLMRobertaForMultipleChoice
< source >( config )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM-RoBERTa 模型,顶部带有多项选择分类头(在池化输出之上的线性层和 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
loss (
torch.FloatTensor
形状为 (1,), 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维度。(见上面的 input_ids)。分类分数(在 SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
XLMRobertaForMultipleChoice 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, XLMRobertaForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = XLMRobertaForMultipleChoice.from_pretrained("FacebookAI/xlm-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
XLMRobertaForTokenClassification
类 transformers.XLMRobertaForTokenClassification
< source >( config )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM-RoBERTa 模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,取决于配置(XLMRobertaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
XLMRobertaForTokenClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, XLMRobertaForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
>>> model = XLMRobertaForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01
XLMRobertaForQuestionAnswering
类 transformers.XLMRobertaForQuestionAnswering
< source >( config )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM-RoBERTa 模型,顶部带有用于抽取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算 span start logits
和 span end logits
)。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会被考虑用于计算损失。 - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会被考虑用于计算损失。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,取决于配置(XLMRobertaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度起始分数(在 SoftMax 之前)。 -
end_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度结束分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
XLMRobertaForQuestionAnswering 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, XLMRobertaForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
>>> model = XLMRobertaForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
' puppet'
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
0.86
TFXLMRobertaModel
类 transformers.TFXLMRobertaModel
< source >( config *inputs **kwargs )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的XLM RoBERTa模型转换器输出原始隐藏状态,顶部没有任何特定的头部。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 所有输入都作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。详情请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。什么是输入 ID? - attention_mask (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。 什么是注意力掩码?
- token_type_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。 什么是标记类型 ID?
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 什么是位置 ID? - head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估时具有不同的行为)。 - encoder_hidden_states (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- past_key_values (
Tuple[Tuple[tf.Tensor]]
长度为config.n_layers
) — 包含预计算的注意力块的关键和值隐藏状态。可用于加速解码。 如果使用了past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的关键值状态提供给此模型的),而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
, 可选, 默认为True
) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时),包含根据配置 (XLMRobertaConfig) 和输入的各种元素。
-
last_hidden_state (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
tf.Tensor
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间通过下一个句子预测(分类)目标训练的。这个输出通常不是输入语义内容的一个好的总结,通常最好对整个输入序列的隐藏状态序列进行平均或池化。
-
past_key_values (
List[tf.Tensor]
, 可选, 当use_cache=True
被传递或当config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。包含预计算的隐藏状态(注意力块中的键和值),可用于(见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当output_hidden_states=True
被传递或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出,一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。
TFXLMRobertaModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = TFXLMRobertaModel.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFXLMRobertaForCausalLM
类 transformers.TFXLMRobertaForCausalLM
< source >( config: XLMRobertaConfig *inputs **kwargs )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM-RoBERTa 模型,顶部带有language modeling
头,用于CLM微调。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。详情请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。什么是输入 ID? - attention_mask (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。 什么是注意力掩码?
- token_type_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。 什么是标记类型 ID?
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
之间。什么是位置 ID? - head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估之间有不同的行为)。 - encoder_hidden_states (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- past_key_values (
Tuple[Tuple[tf.Tensor]]
长度为config.n_layers
) — 包含预计算的关键和值隐藏状态的注意力块。可用于加速解码。 如果使用了past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的关键值状态提供给此模型的),而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - use_cache (
bool
, 可选, 默认为True
) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
- labels (
tf.Tensor
或np.ndarray
形状为(batch_size, sequence_length)
, 可选) — 用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时),包含根据配置(XLMRobertaConfig)和输入的各种元素。
-
loss (
tf.Tensor
形状为(n,)
, 可选, 其中 n 是非掩码标签的数量,当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (
tf.Tensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
List[tf.Tensor]
, 可选, 当传递use_cache=True
或当config.use_cache=True
时返回) —tf.Tensor
列表,长度为config.n_layers
,每个张量形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含预计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)以加速顺序解码。
TFXLMRobertaForCausalLM 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForCausalLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = TFXLMRobertaForCausalLM.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFXLMRobertaForMaskedLM
类 transformers.TFXLMRobertaForMaskedLM
< source >( config *inputs **kwargs )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM RoBERTa 模型,顶部带有language modeling
头。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。详情请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。什么是输入 ID? - attention_mask (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。 什么是注意力掩码?
- token_type_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。 什么是标记类型 ID?
- position_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
内。什么是位置ID? - head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 - 标签 (
tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码), 损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记计算
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置(XLMRobertaConfig)和输入的各种元素。
-
loss (
tf.Tensor
形状为(n,)
,可选,其中 n 是非掩码标签的数量,当提供labels
时返回) — 掩码语言建模(MLM)损失。 -
logits (
tf.Tensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFXLMRobertaForMaskedLM 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = TFXLMRobertaForMaskedLM.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
TFXLMRobertaForSequenceClassification
类 transformers.TFXLMRobertaForSequenceClassification
< source >( config *inputs **kwargs )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM RoBERTa 模型转换器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于GLUE任务。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。详情请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。什么是输入 ID? - attention_mask (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。 什么是注意力掩码?
- token_type_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。 什么是标记类型 ID?
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 什么是位置 ID? - head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值代替。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,具体取决于
配置 (XLMRobertaConfig) 和输入。
-
loss (
tf.Tensor
形状为(batch_size, )
, 可选, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
tf.Tensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFXLMRobertaForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = TFXLMRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'optimism'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFXLMRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.08
TFXLMRobertaForMultipleChoice
类 transformers.TFXLMRobertaForMultipleChoice
< source >( config *inputs **kwargs )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM Roberta 模型,顶部带有多项选择分类头(在池化输出之上的线性层和 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。详情请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。什么是输入 ID? - attention_mask (
Numpy array
或tf.Tensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。 什么是注意力掩码?
- token_type_ids (
Numpy array
或tf.Tensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。 什么是标记类型 ID?
- position_ids (
Numpy array
或tf.Tensor
形状为(batch_size, num_choices, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
之间。什么是位置ID? - head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, num_choices, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在急切模式下使用,在图形模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
形状为(batch_size,)
, 可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]
范围内, 其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置(XLMRobertaConfig)和输入的各种元素。
-
loss (
tf.Tensor
形状为 (batch_size, ), 可选, 当提供labels
时返回) — 分类损失。 -
logits (
tf.Tensor
形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维度。(见上面的 input_ids)。分类分数(在 SoftMax 之前)。
-
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFXLMRobertaForMultipleChoice 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = TFXLMRobertaForMultipleChoice.from_pretrained("FacebookAI/xlm-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFXLMRobertaForTokenClassification
类 transformers.TFXLMRobertaForTokenClassification
< source >( config *inputs **kwargs )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM RoBERTa 模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。详情请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。什么是输入 ID? - attention_mask (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。 什么是注意力掩码?
- token_type_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。 什么是标记类型 ID?
- position_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
内。什么是位置 ID? - head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算令牌分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor
元组(如果
传递了 return_dict=False
或当 config.return_dict=False
时)包含各种元素,具体取决于
配置(XLMRobertaConfig)和输入。
-
loss(形状为
(n,)
的tf.Tensor
,可选,其中 n 是未掩码标签的数量,当提供labels
时返回)— 分类损失。 -
logits(形状为
(batch_size, sequence_length, config.num_labels)
的tf.Tensor
)— 分类分数(在 SoftMax 之前)。 -
hidden_states(
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions(
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFXLMRobertaForTokenClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-large-ner-english")
>>> model = TFXLMRobertaForTokenClassification.from_pretrained("ydshieh/roberta-large-ner-english")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']
TFXLMRobertaForQuestionAnswering
类 transformers.TFXLMRobertaForQuestionAnswering
< source >( config *inputs **kwargs )
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM RoBERTa 模型,顶部带有用于抽取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算 span start logits
和 span end logits
)。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。详情请参见 PreTrainedTokenizer.call() 和 PreTrainedTokenizer.encode()。什么是输入 ID? - attention_mask (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于避免在填充标记索引上执行注意力机制的掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。 什么是注意力掩码?
- token_type_ids (
Numpy array
或tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:- 0 对应于 句子 A 的标记,
- 1 对应于 句子 B 的标记。 什么是标记类型ID?
- position_ids (
Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 什么是位置ID? - head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估时具有不同的行为)。 - start_positions (
tf.Tensor
形状为(batch_size,)
, 可选) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会用于计算损失。 - end_positions (
tf.Tensor
形状为(batch_size,)
, 可选) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会用于计算损失。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,具体取决于
配置 (XLMRobertaConfig) 和输入。
-
loss (
tf.Tensor
形状为(batch_size, )
, 可选, 当start_positions
和end_positions
提供时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits (
tf.Tensor
形状为(batch_size, sequence_length)
) — 跨度起始分数(在 SoftMax 之前)。 -
end_logits (
tf.Tensor
形状为(batch_size, sequence_length)
) — 跨度结束分数(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当output_hidden_states=True
被传递或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFXLMRobertaForQuestionAnswering 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFXLMRobertaForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-base-squad2")
>>> model = TFXLMRobertaForQuestionAnswering.from_pretrained("ydshieh/roberta-base-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
' puppet'
FlaxXLMRobertaModel
类 transformers.FlaxXLMRobertaModel
< source >( config: XLMRobertaConfig input_shape: 类型.元组 = (1, 1) seed: 整数 = 0 dtype: 数据类型 =
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的XLM RoBERTa模型转换器输出原始隐藏状态,顶部没有任何特定的头部。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
形状为(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
,可选) -- 用于屏蔽注意力模块中选定头部的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
last_hidden_state (
jnp.ndarray
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
jnp.ndarray
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间通过下一个句子预测(分类)目标训练的。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxXLMRobertaPreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxXLMRobertaModel
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = FlaxXLMRobertaModel.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxXLMRobertaForCausalLM
类 transformers.FlaxXLMRobertaForCausalLM
< source >( config: XLMRobertaConfig input_shape: 类型.元组 = (1, 1) seed: 整数 = 0 dtype: 数据类型 =
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM Roberta 模型,顶部带有语言建模头(在隐藏状态输出之上的线性层),例如用于自回归任务。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
,可选) -- 用于屏蔽注意力模块中选定头部的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
logits (
jnp.ndarray
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(jnp.ndarray)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。交叉注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(jnp.ndarray))
, 可选, 当传递了use_cache=True
或当config.use_cache=True
时返回) — 由jnp.ndarray
元组组成的元组,长度为config.n_layers
,每个元组包含自注意力和交叉注意力层的缓存键、值 状态,如果模型用于编码器-解码器设置。 仅在config.is_decoder = True
时相关。包含预计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)以加速顺序解码。
FlaxXLMRobertaPreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxXLMRobertaForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = FlaxXLMRobertaForCausalLM.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
FlaxXLMRobertaForMaskedLM
类 transformers.FlaxXLMRobertaForMaskedLM
< source >( config: XLMRobertaConfig input_shape: 类型.元组 = (1, 1) seed: 整数 = 0 dtype: 数据类型 =
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM RoBERTa 模型,顶部带有language modeling
头。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
. - head_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
,可选) -- 用于屏蔽注意力模块中选定头部的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
last_hidden_state (
jnp.ndarray
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
jnp.ndarray
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间通过下一个句子预测(分类)目标训练的。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxXLMRobertaPreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxXLMRobertaForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = FlaxXLMRobertaForMaskedLM.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxXLMRobertaForSequenceClassification
类 transformers.FlaxXLMRobertaForSequenceClassification
< source >( config: XLMRobertaConfig input_shape: 类型.元组 = (1, 1) seed: 整数 = 0 dtype: 数据类型 =
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM Roberta 模型变压器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于GLUE任务。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
之间。 - head_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
,可选) -- 用于屏蔽注意力模块中选定头部的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
logits (
jnp.ndarray
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxXLMRobertaPreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxXLMRobertaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = FlaxXLMRobertaForSequenceClassification.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxXLMRobertaForMultipleChoice
class transformers.FlaxXLMRobertaForMultipleChoice
< source >( config: XLMRobertaConfig input_shape: 类型.元组 = (1, 1) seed: 整数 = 0 dtype: 数据类型 =
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM Roberta 模型,顶部带有多项选择分类头(在池化输出之上的线性层和 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, num_choices, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
之间。 - head_mask (
numpy.ndarray
形状为(batch_size, num_choices, sequence_length)
,可选) -- 用于屏蔽注意力模块中选定头部的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
logits (
jnp.ndarray
形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维度。(见上面的 input_ids)。分类分数(在 SoftMax 之前)。
-
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxXLMRobertaPreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxXLMRobertaForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = FlaxXLMRobertaForMultipleChoice.from_pretrained("FacebookAI/xlm-roberta-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxXLMRobertaForTokenClassification
类 transformers.FlaxXLMRobertaForTokenClassification
< source >( config: XLMRobertaConfig input_shape: 类型.元组 = (1, 1) seed: 整数 = 0 dtype: 数据类型 =
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM Roberta 模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
之间。 - head_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
,可选) -- 用于屏蔽注意力模块中选定头部的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
logits (
jnp.ndarray
形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxXLMRobertaPreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxXLMRobertaForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = FlaxXLMRobertaForTokenClassification.from_pretrained("FacebookAI/xlm-roberta-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxXLMRobertaForQuestionAnswering
类 transformers.FlaxXLMRobertaForQuestionAnswering
< source >( config: XLMRobertaConfig input_shape: 类型.元组 = (1, 1) seed: 整数 = 0 dtype: 数据类型 =
参数
- config (XLMRobertaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
XLM Roberta 模型,顶部带有用于抽取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层用于计算 span start logits
和 span end logits
)。
该模型继承自FlaxPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(如下载、保存和从PyTorch模型转换权重)。
该模型也是一个 flax.linen.Module 子类。将其作为 常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般使用和行为相关的所有信息。
最后,该模型支持JAX的固有特性,例如:
__call__
< source >( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: tuple(torch.FloatTensor)
参数
- input_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
numpy.ndarray
of shape(batch_size, sequence_length)
, 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]
之间。 - head_mask (
numpy.ndarray
形状为(batch_size, sequence_length)
,可选) -- 用于屏蔽注意力模块中选定头部的掩码。掩码值在
[0, 1]` 中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(XLMRobertaConfig)和输入。
-
start_logits (
jnp.ndarray
形状为(batch_size, sequence_length)
) — 跨度开始分数(在 SoftMax 之前)。 -
end_logits (
jnp.ndarray
形状为(batch_size, sequence_length)
) — 跨度结束分数(在 SoftMax 之前)。 -
hidden_states (
tuple(jnp.ndarray)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由jnp.ndarray
组成的元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(jnp.ndarray)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由jnp.ndarray
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxXLMRobertaPreTrainedModel
的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxXLMRobertaForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/xlm-roberta-base")
>>> model = FlaxXLMRobertaForQuestionAnswering.from_pretrained("FacebookAI/xlm-roberta-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits