Transformers 文档

FNet

FNet

概述

FNet模型由James Lee-Thorp、Joshua Ainslie、Ilya Eckstein和Santiago Ontanon在FNet: Mixing Tokens with Fourier Transforms中提出。该模型用傅里叶变换替换了BERT模型中的自注意力层,该变换仅返回变换的实部。由于参数较少且内存效率更高,该模型比BERT模型显著更快。在GLUE基准测试中,该模型达到了BERT模型约92-97%的准确率,并且训练速度比BERT模型快得多。论文的摘要如下:

我们展示了通过用简单的线性变换替换自注意力子层,可以在有限的精度损失下加速Transformer编码器架构,这些线性变换“混合”输入标记。这些线性混合器,连同前馈层中的标准非线性,证明在多个文本分类任务中能够有效地建模语义关系。最令人惊讶的是,我们发现用标准的、无参数化的傅里叶变换替换Transformer编码器中的自注意力子层,在GLUE基准测试中可以达到BERT对应模型的92-97%的准确率,但在标准512输入长度下,GPU上的训练速度提高了80%,TPU上的训练速度提高了70%。在更长的输入长度下,我们的FNet模型显著更快:与Long Range Arena基准测试中的“高效”Transformers相比,FNet在GPU上(以及在TPU上相对较短的序列长度上)在所有序列长度上都超过了最快的模型,同时匹配了最准确模型的准确率。最后,FNet具有轻量级的内存占用,并且在较小的模型尺寸下特别高效;在固定的速度和精度预算下,小型FNet模型优于Transformer对应模型。

该模型由gchhablani贡献。原始代码可以在这里找到。

使用提示

该模型在训练时没有使用注意力掩码,因为它基于傅里叶变换。模型训练时使用的最大序列长度为512,其中包括填充标记。因此,强烈建议在微调和推理时使用相同的最大序列长度。

资源

FNetConfig

transformers.FNetConfig

< >

( 词汇大小 = 32000 隐藏大小 = 768 隐藏层数 = 12 中间大小 = 3072 隐藏激活函数 = 'gelu_new' 隐藏层丢弃概率 = 0.1 最大位置嵌入 = 512 类型词汇大小 = 4 初始化范围 = 0.02 层归一化epsilon = 1e-12 使用TPU傅里叶优化 = False TPU短序列长度 = 512 填充标记ID = 3 开始标记ID = 1 结束标记ID = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 32000) — FNet模型的词汇表大小。定义了调用FNetModelTFFNetModel时传递的inputs_ids可以表示的不同标记的数量。
  • hidden_size (int, optional, defaults to 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, optional, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • intermediate_size (int, optional, 默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu_new") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""selu""gelu_new"
  • hidden_dropout_prob (float, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • max_position_embeddings (int, optional, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 4) — 调用 FNetModelTFFNetModel 时传递的 token_type_ids 的词汇大小.
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的epsilon值。
  • use_tpu_fourier_optimizations (bool, 可选, 默认为 False) — 确定是否使用TPU优化的FFT。如果为True,模型将优先使用轴方向的FFT变换。 对于GPU/CPU硬件,设置为False,在这种情况下使用n维FFT。
  • tpu_short_seq_length (int, 可选, 默认为 512) — 当使用TPU时,模型期望的序列长度。这仅在use_tpu_fourier_optimizations设置为True且输入序列长度小于或等于4096个标记时,用于初始化DFT矩阵。

这是用于存储FNetModel配置的配置类。它用于根据指定的参数实例化FNet模型,定义模型架构。使用默认值实例化配置将产生与FNet google/fnet-base架构类似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import FNetConfig, FNetModel

>>> # Initializing a FNet fnet-base style configuration
>>> configuration = FNetConfig()

>>> # Initializing a model (with random weights) from the fnet-base style configuration
>>> model = FNetModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

FNetTokenizer

transformers.FNetTokenizer

< >

( vocab_file do_lower_case = False remove_space = True keep_accents = True unk_token = '' sep_token = '[SEP]' pad_token = '' cls_token = '[CLS]' mask_token = '[MASK]' sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常具有 .spm 扩展名),包含实例化分词器所需的词汇表。
  • do_lower_case (bool, 可选, 默认为 False) — 是否在分词时将输入转换为小写。
  • remove_space (bool, 可选, 默认为 True) — 是否在分词时去除文本中的空格(去除字符串前后的多余空格)。
  • keep_accents (bool, optional, defaults to True) — 是否在分词时保留重音符号。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • sep_token (str, optional, defaults to "[SEP]") — 分隔符标记,用于从多个序列构建一个序列时使用,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。
  • cls_token (str, 可选, 默认为 "[CLS]") — 用于序列分类的分类器标记(对整个序列进行分类,而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • mask_token (str, 可选, 默认为 "[MASK]") — 用于屏蔽值的标记。这是在训练此模型时用于屏蔽语言建模的标记。这是模型将尝试预测的标记。
  • sp_model_kwargs (dict, optional) — Will be passed to the SentencePieceProcessor.__init__() method. The Python wrapper for SentencePiece can be used, among other things, to set:
    • enable_sampling: 启用子词正则化。

    • nbest_size: 用于unigram的采样参数。对于BPE-Dropout无效。

      • nbest_size = {0,1}: No sampling is performed.
      • nbest_size > 1: samples from the nbest_size results.
      • nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
    • alpha: 用于单字采样的平滑参数,以及BPE-dropout的合并操作丢弃概率。

  • sp_model (SentencePieceProcessor) — 用于每次转换(字符串、标记和ID)的SentencePiece处理器。

构建一个FNet分词器。改编自AlbertTokenizer。基于 SentencePiece。此分词器继承自PreTrainedTokenizer, 其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。FNet序列具有以下格式:

  • 单一序列: [CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。
  • already_has_special_tokens (bool, optional, defaults to False) — token列表是否已经用模型的特殊token格式化。

返回

List[int]

一个整数列表,范围在[0, 1]:1表示特殊标记,0表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model方法添加特殊标记时,会调用此方法。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

根据给定序列的token type IDs列表。

从传递给序列对分类任务的两个序列中创建一个掩码。一个FNet序列

pair mask 的格式如下:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |

如果 token_ids_1None,此方法仅返回掩码的第一部分(0s)。

保存词汇表

< >

( 保存目录: str 文件名前缀: typing.Optional[str] = None )

FNetTokenizerFast

transformers.FNetTokenizerFast

< >

( vocab_file = None tokenizer_file = None do_lower_case = False remove_space = True keep_accents = True unk_token = '' sep_token = '[SEP]' pad_token = '' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常具有 .spm 扩展名),包含实例化分词器所需的词汇表。
  • do_lower_case (bool, 可选, 默认为 False) — 是否在分词时将输入转换为小写。
  • remove_space (bool, 可选, 默认为 True) — 是否在分词时去除文本中的空格(去除字符串前后的多余空格)。
  • keep_accents (bool, optional, defaults to True) — 是否在分词时保留重音符号。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • sep_token (str, optional, defaults to "[SEP]") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token (str, 可选, 默认为 "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。
  • cls_token (str, 可选, 默认为 "[CLS]") — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • mask_token (str, optional, defaults to "[MASK]") — 用于屏蔽值的标记。这是在训练此模型时用于屏蔽语言建模的标记。这是模型将尝试预测的标记。

构建一个“快速”的FNetTokenizer(基于HuggingFace的tokenizers库)。改编自 AlbertTokenizerFast。基于 Unigram。这个 分词器继承自PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考 这个超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。FNet序列具有以下格式:

  • 单一序列: [CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

根据给定序列的token type IDs列表。

从传递给序列对分类任务的两个序列中创建一个掩码。一个FNet

序列对掩码具有以下格式:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1 为 None,则只返回掩码的第一部分(0s)。

FNetModel

transformers.FNetModel

< >

( config add_pooling_layer = True )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的FNet模型转换器,输出原始隐藏状态,没有任何特定的头部。 该模型是PyTorch torch.nn.Module 的子类。将其用作常规的PyTorch模块,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

该模型可以作为编码器运行,遵循James Lee-Thorp、Joshua Ainslie、Ilya Eckstein和Santiago Ontanon在FNet: Mixing Tokens with Fourier Transforms中描述的架构。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(FNetConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。

FNetModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetModel.from_pretrained("google/fnet-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FNetForPreTraining

transformers.FNetForPreTraining

< >

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet模型在预训练期间使用了两个头部:一个masked language modeling头部和一个next sentence prediction (classification)头部。

该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None next_sentence_label: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码), 损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记进行计算
  • next_sentence_label (torch.LongTensor of shape (batch_size,), optional) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对 (参见 input_ids 文档字符串) 索引应该在 [0, 1] 中:
    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。
  • kwargs (Dict[str, any], 可选, 默认为 {}) — 用于隐藏已被弃用的旧参数.

返回

transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.fnet.modeling_fnet.FNetForPreTrainingOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(FNetConfig)和输入。

  • loss (可选,当提供了 labels 时返回,torch.FloatTensor 形状为 (1,)) — 总损失,作为掩码语言建模损失和下一序列预测 (分类)损失的总和。
  • prediction_logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一序列预测(分类)头的预测分数(SoftMax 之前 True/False 继续的分数)。
  • hidden_states (tuple(torch.FloatTensor), 可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)。模型在每层输出处的隐藏状态 加上初始嵌入输出。

FNetForPreTraining 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForPreTraining.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FNetForMaskedLM

transformers.FNetForMaskedLM

< >

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet 模型顶部带有语言建模头。 此模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般使用和行为相关的所有事项。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码), 损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记进行计算。

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,取决于配置(FNetConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 掩码语言建模(MLM)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForMaskedLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForMaskedLM.from_pretrained("google/fnet-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

FNetForNextSentencePrediction

class transformers.FNetForNextSentencePrediction

< >

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet 模型,顶部带有next sentence prediction (classification)头。 该模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般使用和行为相关的所有事项。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对 (参见 input_ids 文档字符串)。索引应该在 [0, 1] 范围内:
    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。

返回

transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,取决于配置(FNetConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一个序列预测(分类)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(在 SoftMax 之前的 True/False 继续的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForNextSentencePrediction 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

FNetForSequenceClassification

transformers.FNetForSequenceClassification

< >

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet模型转换器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于GLUE任务。

该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(FNetConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, FNetForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, FNetForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForSequenceClassification.from_pretrained("google/fnet-base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FNetForSequenceClassification.from_pretrained(
...     "google/fnet-base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

FNetForMultipleChoice

transformers.FNetForMultipleChoice

< >

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet模型,顶部带有多项选择分类头(在池化输出之上的线性层和softmax),例如用于RocStories/SWAG任务。

该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 范围内,其中 num_choices 是输入张量第二维度的大小。(参见上面的 input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(FNetConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二维度。(见上面的 input_ids)。

    分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForMultipleChoice 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForMultipleChoice.from_pretrained("google/fnet-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

FNetForTokenClassification

transformers.FNetForTokenClassification

< >

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。

该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算令牌分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,取决于配置(FNetConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForTokenClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForTokenClassification.from_pretrained("google/fnet-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

FNetForQuestionAnswering

transformers.FNetForQuestionAnswering

< >

( config )

参数

  • config (FNetConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

FNet模型,顶部带有用于抽取式问答任务(如SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算span start logitsspan end logits)。

该模型是一个PyTorch torch.nn.Module 子类。将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会被考虑用于计算损失。
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会用于计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(FNetConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度起始分数(在 SoftMax 之前)。

  • end_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度结束分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FNetForQuestionAnswering 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FNetForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForQuestionAnswering.from_pretrained("google/fnet-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
< > Update on GitHub