Transformers 文档

广义线性模型

GLM

概述

GLM模型由GLM团队、THUDM和智谱AI在ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools中提出。

论文的摘要如下:

我们介绍了ChatGLM,这是一个不断发展的大家族语言模型,我们一直在不断开发。本报告主要关注GLM-4语言系列,包括GLM-4、GLM-4-Air和GLM-4-9B。它们代表了我们从ChatGLM前三代中获得的全部见解和经验所训练出的最强大模型。迄今为止,GLM-4模型已经预训练了数万亿个主要来自中文和英文的标记,以及来自24种语言的一小部分语料库,并且主要针对中文和英文使用进行了对齐。高质量的对齐是通过多阶段的后训练过程实现的,其中包括监督微调和从人类反馈中学习。评估显示,GLM-4 1) 在MMLU、GSM8K、MATH、BBH、GPQA和HumanEval等通用指标上接近或优于GPT-4,2) 在指令跟随方面接近GPT-4-Turbo(通过IFEval测量),3) 在长上下文任务中与GPT-4 Turbo(128K)和Claude 3相当,4) 在中文对齐方面优于GPT-4(通过AlignBench测量)。GLM-4 All Tools模型进一步对齐,以理解用户意图并自主决定何时使用哪些工具——包括网络浏览器、Python解释器、文本到图像模型和用户定义函数——以有效完成复杂任务。在实际应用中,它在通过网页浏览访问在线信息和使用Python解释器解决数学问题等任务中与甚至超越了GPT-4 All Tools。在此过程中,我们开源了一系列模型,包括ChatGLM-6B(三代)、GLM-4-9B(128K、1M)、GLM-4V-9B、WebGLM和CodeGeeX,仅在2023年就在Hugging face上吸引了超过1000万次下载。

提示:

  • 该模型由THUDM贡献。最新代码可以在这里找到。

使用提示

GLM-4 可以在 Huggingface Hub 上找到

在下面,我们演示了如何使用glm-4-9b-chat进行推理。请注意,我们使用了ChatML格式进行对话,在这个演示中,我们展示了如何利用apply_chat_template来实现这一目的。

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto

>>> model = AutoModelForCausalLM.from_pretrained("THUDM/glm-4-9b-chat", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat")

>>> prompt = "Give me a short introduction to large language model."

>>> messages = [{"role": "user", "content": prompt}]

>>> text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

>>> model_inputs = tokenizer([text], return_tensors="pt").to(device)

>>> generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)

>>> generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]

>>> response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

GlmConfig

transformers.GlmConfig

< >

( vocab_size = 151552 hidden_size = 4096 intermediate_size = 13696 num_hidden_layers = 40 num_attention_heads = 32 num_key_value_heads = 2 partial_rotary_factor = 0.5 head_dim = 128 hidden_act = 'silu' attention_dropout = 0.0 max_position_embeddings = 131072 initializer_range = 0.02 rms_norm_eps = 1.5625e-07 use_cache = True tie_word_embeddings = False rope_theta = 10000.0 pad_token_id = 151329 eos_token_id = [151329, 151336, 151338] bos_token_id = None attention_bias = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 151552) — Glm 模型的词汇表大小。定义了可以通过调用 GlmModel 时传递的 inputs_ids 表示的不同标记的数量
  • hidden_size (int, optional, 默认为 4096) — 隐藏表示的维度。
  • intermediate_size (int, optional, 默认为 13696) — MLP 表示的维度。
  • num_hidden_layers (int, optional, 默认为 40) — Transformer 解码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 32) — Transformer解码器中每个注意力层的注意力头数。
  • num_key_value_heads (int, 可选, 默认为 2) — 这是用于实现分组查询注意力(Grouped Query Attention)的键值头数量。如果 num_key_value_heads=num_attention_heads,模型将使用多头注意力(MHA),如果 num_key_value_heads=1,模型将使用多查询注意力(MQA),否则将使用GQA。当 将多头检查点转换为GQA检查点时,每个组的键和值头应通过平均池化该组中的所有原始头来构建。 更多详细信息请查看这篇论文。如果未指定,将默认为 num_attention_heads.
  • partial_rotary_factor (float, optional, 默认为0.5) — 部分旋转位置的因素.
  • head_dim (int, optional, 默认为 128) — 注意力头的维度。
  • hidden_act (strfunction, 可选, 默认为 "silu") — 传统的激活函数。它被 hidden_activation 覆盖。
  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的丢弃比率。
  • max_position_embeddings (int, optional, defaults to 131072) — 此模型可能使用的最大序列长度。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • rms_norm_eps (float, optional, defaults to 1.5625e-07) — rms归一化层使用的epsilon值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • tie_word_embeddings (bool, optional, defaults to False) — 是否绑定权重嵌入
  • rope_theta (float, optional, 默认为 10000.0) — RoPE 嵌入的基础周期。
  • pad_token_id (int, optional, 默认为 151329) — 填充标记的ID.
  • eos_token_id (int | list, 可选, 默认为 [151329, 151336, 151338]) — 流结束标记的ID.
  • bos_token_id (int, optional) — 流的开始标记id.
  • attention_bias (bool, 默认为 False, 可选, 默认为 True) — 是否在自注意力机制中的查询、键、值和输出投影层中使用偏置。

这是用于存储GlmModel配置的配置类。它用于根据指定的参数实例化一个Glm模型,定义模型架构。使用默认值实例化配置将产生与Glm-4-9b-chat类似的配置。 例如:THUDM/glm-4-9b-chat 配置对象继承自PretrainedConfig,可用于控制模型输出。更多信息请阅读PretrainedConfig的文档。

>>> from transformers import GlmModel, GlmConfig
>>> # Initializing a Glm glm-4-9b-chat style configuration
>>> configuration = GlmConfig()
>>> # Initializing a model from the glm-4-9b-chat style configuration
>>> model = GlmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

GlmModel

transformers.GlmModel

< >

( config: GlmConfig )

参数

  • config (GlmConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
  • config — GlmConfig

裸的Glm模型输出原始隐藏状态,没有任何特定的头部。 此模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

Transformer解码器由config.num_hidden_layers层组成。每一层都是一个GlmDecoderLayer

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。

GlmModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

GlmForCausalLM

transformers.GlmForCausalLM

< >

( config: GlmConfig )

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None num_logits_to_keep: int = 0 **loss_kwargs ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
  • Args — labels (torch.LongTensor of shape (batch_size, sequence_length), optional): Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

    num_logits_to_keep (int, 可选): 计算最后num_logits_to_keep个token的logits。如果为0,则计算所有input_ids的logits(特殊情况)。生成时只需要最后一个token的logits,仅计算该token的logits可以节省内存,这对于长序列或大词汇量来说非常重要。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(GlmConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GlmForCausalLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, GlmForCausalLM

>>> model = GlmForCausalLM.from_pretrained("google/glm-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/glm-7b")

>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"

GlmForSequenceClassification

transformers.GlmForSequenceClassification

< >

( config: GlmConfig )

参数

  • config (GlmConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

带有序列分类头(线性层)的Glm模型转换器。

GlmForSequenceClassification 使用最后一个标记进行分类,与其他因果模型(例如 GPT-2)相同。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义pad_token_id,它只需取批次中每一行的最后一个值。由于在传递inputs_embeds而不是input_ids时无法猜测填充标记,它会执行相同的操作(取批次中每一行的最后一个值)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

GlmForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

GlmForTokenClassification

class transformers.GlmForTokenClassification

< >

( config: GlmConfig )

参数

  • config (GlmConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Glm模型转换器,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
  • labels (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(GlmConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GlmForTokenClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, GlmForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b")
>>> model = GlmForTokenClassification.from_pretrained("THUDM/glm-4-9b")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
< > Update on GitHub