Open-Llama
此模型仅处于维护模式,我们不接受任何更改其代码的新PR。
如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.31.0。
您可以通过运行以下命令来执行此操作:pip install -U transformers==4.31.0。
该模型与Hugging Face Hub上的OpenLLaMA模型不同,后者主要使用LLaMA架构。
概述
Open-Llama模型是由社区开发者s-JoL在开源Open-Llama项目中提出的。
该模型主要基于LLaMA进行了一些修改,结合了Xformers中的内存高效注意力机制、Bloom中的稳定嵌入以及PaLM中的共享输入输出嵌入。 此外,该模型在中文和英文上都进行了预训练,这使得它在中文语言任务上表现更好。
该模型由s-JoL贡献。 原始代码由s-JoL在GitHub上发布,但现已被移除。
OpenLlamaConfig
类 transformers.OpenLlamaConfig
< source >( vocab_size = 100000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False use_memory_efficient_attention = True hidden_dropout_prob = 0.1 attention_dropout_prob = 0.1 use_stable_embedding = True shared_input_output_embedding = True rope_theta = 10000.0 rope_scaling = None **kwargs )
参数
- vocab_size (
int, 可选, 默认为 32000) — Open-Llama 模型的词汇表大小。定义了调用 OpenLlamaModel 时传递的inputs_ids可以表示的不同标记的数量 - hidden_size (
int, optional, 默认为 4096) — 隐藏表示的维度。 - intermediate_size (
int, optional, 默认为 11008) — MLP 表示的维度。 - num_hidden_layers (
int, optional, 默认为 32) — Transformer 编码器中的隐藏层数量。 - num_attention_heads (
int, optional, 默认为 32) — Transformer 编码器中每个注意力层的注意力头数。 - hidden_act (
str或function, 可选, 默认为"silu") — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int, optional, 默认为 2048) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - initializer_range (
float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 - rms_norm_eps (
float, optional, defaults to 1e-12) — rms归一化层使用的epsilon值。 - use_cache (
bool, 可选, 默认为True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True时相关。 - tie_word_embeddings(
bool, 可选, 默认为False) — 是否绑定权重嵌入 - rope_theta (
float, optional, 默认为 10000.0) — RoPE 嵌入的基础周期。 - rope_scaling (
Dict, optional) — Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is{"type": strategy name, "factor": scaling factor}. When using this flag, don’t updatemax_position_embeddingsto the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. - 示例 —
这是用于存储OpenLlamaModel配置的配置类。它用于根据指定的参数实例化一个Open-Llama模型,定义模型架构。使用默认值实例化配置将产生类似于s-JoL/Open-Llama-V1的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
>>> from transformers import OpenLlamaModel, OpenLlamaConfig
>>> # Initializing a Open-Llama open_llama-7b style configuration
>>> configuration = OpenLlamaConfig()
>>> # Initializing a model from the open_llama-7b style configuration
>>> model = OpenLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configOpenLlamaModel
类 transformers.OpenLlamaModel
< source >( config: OpenLlamaConfig )
参数
- config (OpenLlamaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
- config — OpenLlamaConfig
裸的Open-Llama模型输出原始隐藏状态,没有任何特定的头部。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
Transformer解码器由config.num_hidden_layers层组成。每一层都是一个OpenLlamaDecoderLayer
前进
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
如果使用了
past_key_values,则可以选择性地仅输入最后一个decoder_input_ids(参见past_key_values)。如果你想改变填充行为,你应该阅读
modeling_opt._prepare_decoder_attention_mask并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见
past_key_values输入)以加速顺序解码。如果使用了
past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids。 - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - use_cache (
bool, 可选) — 如果设置为True,past_key_values键值状态将被返回,并可用于加速解码(参见past_key_values)。 - output_attentions (
bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。 - output_hidden_states (
bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。 - return_dict (
bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
OpenLlamaModel 的前向方法,重写了 __call__ 特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
OpenLlamaForCausalLM
前进
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
如果使用了
past_key_values,则可以选择性地仅输入最后一个decoder_input_ids(参见past_key_values)。如果你想改变填充行为,你应该阅读
modeling_opt._prepare_decoder_attention_mask并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见
past_key_values输入)以加速顺序解码。如果使用了
past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids。 - inputs_embeds (
torch.FloatTensor形状为(batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - use_cache (
bool, 可选) — 如果设置为True,past_key_values键值状态将被返回,并可用于加速解码(参见past_key_values)。 - output_attentions (
bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。 - output_hidden_states (
bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。 - return_dict (
bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - Args —
labels (
torch.LongTensorof shape(batch_size, sequence_length), optional): 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]或 -100 之间(参见input_ids文档字符串)。索引设置为-100的标记将被忽略 (掩码),损失仅针对标签在[0, ..., config.vocab_size]之间的标记计算。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个由
torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种
元素,取决于配置(OpenLlamaConfig)和输入。
-
loss (
torch.FloatTensor形状为(1,), 可选, 当提供labels时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (
torch.FloatTensor形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor)), 可选, 当传递use_cache=True或当config.use_cache=True时返回) — 长度为config.n_layers的tuple(torch.FloatTensor)元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量包含预先计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) —torch.FloatTensor的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)。模型在每层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor), 可选, 当传递output_attentions=True或当config.output_attentions=True时返回) —torch.FloatTensor的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
OpenLlamaForCausalLM 的前向方法,重写了 __call__ 特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM
>>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."OpenLlamaForSequenceClassification
类 transformers.OpenLlamaForSequenceClassification
< source >( config )
参数
- config (OpenLlamaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化时不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
LLaMa 模型转换器,顶部带有序列分类头(线性层)。
OpenLlamaForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义pad_token_id,它只需取批次中每一行的最后一个值。由于在传递inputs_embeds而不是input_ids时无法猜测填充标记,它会执行相同的操作(取批次中每一行的最后一个值)。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
参数
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
如果使用了
past_key_values,则可以选择性地仅输入最后一个decoder_input_ids(参见past_key_values)。如果你想改变填充行为,你应该阅读
modeling_opt._prepare_decoder_attention_mask并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - past_key_values (
tuple(tuple(torch.FloatTensor)), optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — Tuple oftuple(torch.FloatTensor)of lengthconfig.n_layers, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head).包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见
past_key_values输入)以加速顺序解码。如果使用了
past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids。 - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - use_cache (
bool, 可选) — 如果设置为True,past_key_values键值状态将被返回,并可用于加速解码(参见past_key_values)。 - output_attentions (
bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。 - output_hidden_states (
bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。 - return_dict (
bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensorof shape(batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。
OpenLlamaForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。