Transformers 文档

X-MOD

X-MOD

概述

X-MOD模型由Jonas Pfeiffer、Naman Goyal、Xi Lin、Xian Li、James Cross、Sebastian Riedel和Mikel Artetxe在通过预训练模块化Transformer提升多语言性的诅咒中提出。 X-MOD扩展了多语言掩码语言模型,如XLM-R,在预训练期间包含特定语言的模块化组件(语言适配器)。在微调时,每个Transformer层中的语言适配器被冻结。

论文的摘要如下:

众所周知,多语言预训练模型会受到多语言诅咒的影响,这导致随着覆盖的语言增多,每种语言的性能会下降。我们通过引入特定语言的模块来解决这个问题,这使得我们能够增加模型的总容量,同时保持每种语言的可训练参数总数不变。与之前的工作不同,那些工作是在事后学习特定语言的组件,而我们从一开始就预训练了跨语言模块化(X-MOD)模型的模块。我们在自然语言推理、命名实体识别和问答方面的实验表明,我们的方法不仅减轻了语言之间的负面干扰,还实现了正向迁移,从而提高了单语言和跨语言的性能。此外,我们的方法使得在事后添加语言时不会出现性能下降,不再将模型的使用限制在预训练语言的集合中。

该模型由jvamvas贡献。 原始代码可以在这里找到,原始文档可以在这里找到。

使用提示

提示:

  • X-MOD 类似于 XLM-R,但不同之处在于需要指定输入语言,以便激活正确的语言适配器。
  • 主要模型——基础版和大版——适配81种语言。

适配器使用

输入语言

有两种方法可以指定输入语言:

  1. 在使用模型之前设置默认语言:
from transformers import XmodModel

model = XmodModel.from_pretrained("facebook/xmod-base")
model.set_default_language("en_XX")
  1. 通过显式传递每个样本的语言适配器索引:
import torch

input_ids = torch.tensor(
    [
        [0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2],
        [0, 1310, 49083, 443, 269, 71, 5486, 165, 60429, 660, 23, 2],
    ]
)
lang_ids = torch.LongTensor(
    [
        0,  # en_XX
        8,  # de_DE
    ]
)
output = model(input_ids, lang_ids=lang_ids)

微调

论文建议在微调期间冻结嵌入层和语言适配器。提供了一种实现此目的的方法:

model.freeze_embeddings_and_language_adapters()
# Fine-tune the model ...

跨语言迁移

微调后,可以通过激活目标语言的语言适配器来测试零样本跨语言迁移:

model.set_default_language("de_DE")
# Evaluate the model on German examples ...

资源

XmodConfig

transformers.XmodConfig

< >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None pre_norm = False adapter_reduction_factor = 2 adapter_layer_norm = False adapter_reuse_layer_norm = True ln_before_adapter = True languages = ('en_XX',) default_language = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — X-MOD 模型的词汇表大小。定义了调用 XmodModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, optional, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, optional, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 12) — Transformer编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu", "relu", "silu""gelu_new".
  • hidden_dropout_prob (float, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, optional, defaults to 0.1) — 注意力概率的丢弃比率。
  • max_position_embeddings (int, optional, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 调用 XmodModel 时传递的 token_type_ids 的词汇大小.
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的epsilon值。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute", "relative_key", "relative_key_query" 中的一个。对于 位置嵌入,使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.). 有关 "relative_key_query" 的更多信息,请参阅 方法 4Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).
  • is_decoder (bool, 可选, 默认为 False) — 模型是否用作解码器。如果为 False,则模型用作编码器。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • classifier_dropout (float, optional) — 分类头的丢弃比率。
  • pre_norm (bool, optional, defaults to False) — 是否在每个块之前应用层归一化。
  • adapter_reduction_factor (intfloat, 可选, 默认为 2) — 适配器维度相对于 hidden_size 的缩减因子。
  • adapter_layer_norm (bool, 可选, 默认为 False) — 是否在适配器模块之前应用新的层归一化(所有适配器共享)。
  • adapter_reuse_layer_norm (bool, 可选, 默认为 True) — 是否重用第二个层归一化并在适配器模块之前也应用它。
  • ln_before_adapter (bool, 可选, 默认为 True) — 是否在适配器模块周围的残差连接之前应用层归一化。
  • 语言 (Iterable[str], 可选, 默认为 ["en_XX"]) — 一个用于初始化适配器模块的语言代码的可迭代对象。
  • default_language (str, optional) — 默认语言的代码。如果没有明确将语言代码传递给forward方法,将假定输入为此语言。

这是用于存储XmodModel配置的配置类。它用于根据指定的参数实例化一个X-MOD模型,定义模型架构。使用默认值实例化配置将产生类似于facebook/xmod-base架构的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import XmodConfig, XmodModel

>>> # Initializing an X-MOD facebook/xmod-base style configuration
>>> configuration = XmodConfig()

>>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration
>>> model = XmodModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

XmodModel

transformers.XmodModel

< >

( config add_pooling_layer = True )

参数

  • config (XmodConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸X-MOD模型转换器输出原始隐藏状态,顶部没有任何特定的头部。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

该模型可以作为编码器(仅具有自注意力机制)以及解码器,在这种情况下,自注意力层之间会添加一层交叉注意力层,遵循Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser和Illia Polosukhin在Attention is all you need_中描述的架构。

要作为解码器使用,模型需要使用配置中的is_decoder参数初始化为True。要在Seq2Seq模型中使用,模型需要同时使用is_decoder参数和add_cross_attention参数初始化为True;然后在前向传递中需要输入encoder_hidden_states

.. _注意力就是一切: https://arxiv.org/abs/1706.03762

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None lang_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • lang_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 应分别为每个样本激活的语言适配器的索引。默认值:对应于self.config.default_language的索引。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:
    • 1 表示 未掩码 的标记,
    • 0 表示 掩码 的标记。
  • past_key_values (tuple(tuple(torch.FloatTensor)) 长度为 config.n_layers,每个元组包含4个张量 —
  • of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。

XmodModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

XmodForCausalLM

transformers.XmodForCausalLM

< >

( config )

参数

  • config (XmodConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

X-MOD 模型,顶部带有语言建模头,用于CLM微调。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None lang_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Tuple[typing.Tuple[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • lang_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 应该为每个样本激活的语言适配器的索引。默认值:对应于self.config.default_language的索引。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:
    • 1 表示 未掩码 的标记,
    • 0 表示 掩码 的标记。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算从左到右语言建模损失(下一个词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的 标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记计算
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • 返回transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)
  • 示例
  • ```python

    从transformers库中导入AutoTokenizer, XmodForCausalLM, AutoConfig 导入torch

XmodForCausalLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

XmodForMaskedLM

transformers.XmodForMaskedLM

< >

( config )

参数

  • config (XmodConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

X-MOD 模型,顶部带有language modeling头。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None lang_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • lang_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个样本应激活的语言适配器的索引。默认值:对应于self.config.default_language的索引。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码), 损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记进行计算
  • kwargs (Dict[str, any], optional, defaults to {}) — 用于隐藏已被弃用的旧参数。

XmodForMaskedLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

XmodForSequenceClassification

transformers.XmodForSequenceClassification

< >

( config )

参数

  • config (XmodConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

X-MOD 模型转换器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于GLUE任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None lang_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • lang_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 应该为每个样本激活的语言适配器的索引。默认值:对应于self.config.default_language的索引。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

XmodForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

XmodForMultipleChoice

transformers.XmodForMultipleChoice

< >

( config )

参数

  • config (XmodConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

X-MOD 模型,顶部带有多项选择分类头(在池化输出之上的线性层和 softmax),例如用于 RocStories/SWAG 任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None lang_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • lang_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — 应该为每个样本激活的语言适配器的索引。默认值:对应于self.config.default_language的索引。
  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 范围内,其中 num_choices 是输入张量第二维的大小。(参见上面的 input_ids

XmodForMultipleChoice 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

XmodForTokenClassification

transformers.XmodForTokenClassification

< >

( config )

参数

  • config (XmodConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

X-MOD 模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None lang_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • lang_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 应该为每个样本激活的语言适配器的索引。默认值:对应于self.config.default_language的索引。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。

XmodForTokenClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

XmodForQuestionAnswering

transformers.XmodForQuestionAnswering

< >

( config )

参数

  • config (XmodConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

X-MOD 模型,顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD(在隐藏状态输出顶部使用线性层来计算 span start logitsspan end logits)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None lang_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • lang_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 应该为每个样本激活的语言适配器的索引。默认值:对应于self.config.default_language的索引。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会用于计算损失。
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会用于计算损失。

XmodForQuestionAnswering 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

< > Update on GitHub