OpenAI GPT
概述
OpenAI GPT模型由Alec Radford、Karthik Narasimhan、Tim Salimans和Ilya Sutskever在通过生成预训练提高语言理解能力中提出。它是一种因果(单向)变压器,通过在具有长距离依赖关系的大规模语料库——多伦多图书语料库上进行语言建模预训练。
论文的摘要如下:
自然语言理解包括多种多样的任务,如文本蕴含、问答、语义相似性评估和文档分类。尽管大量未标注的文本语料库丰富,但用于学习这些特定任务的标注数据却稀缺,这使得判别训练的模型难以充分表现。我们展示了通过对未标注文本的多样化语料库进行生成式预训练,然后在每个特定任务上进行判别式微调,可以在这些任务上实现显著的提升。与之前的方法相比,我们在微调过程中利用任务感知的输入转换,以实现有效的迁移,同时只需对模型架构进行最小的更改。我们在自然语言理解的广泛基准测试中展示了我们方法的有效性。我们的通用任务无关模型优于那些为每个任务专门设计的架构的判别训练模型,在研究的12个任务中有9个显著改进了现有技术水平。
Write With Transformer 是一个由 Hugging Face 创建并托管的网络应用程序,展示了多个模型的生成能力。GPT 是其中之一。
使用提示
- GPT 是一个具有绝对位置嵌入的模型,因此通常建议在输入的右侧而不是左侧进行填充。
- GPT 是使用因果语言建模(CLM)目标进行训练的,因此在预测序列中的下一个标记方面非常强大。利用这一特性,GPT-2 能够生成语法连贯的文本,正如在 run_generation.py 示例脚本中所观察到的那样。
注意:
如果你想重现OpenAI GPT论文中的原始分词过程,你需要安装ftfy
和SpaCy
:
pip install spacy ftfy==4.4.3 python -m spacy download en
如果你不安装 ftfy
和 SpaCy
,OpenAIGPTTokenizer 将默认使用 BERT 的 BasicTokenizer
进行分词,然后使用字节对编码(对于大多数使用场景来说应该没问题,不用担心)。
资源
一份官方的Hugging Face和社区(由🌎表示)资源列表,帮助您开始使用OpenAI GPT。如果您有兴趣提交资源以包含在此处,请随时打开一个Pull Request,我们将对其进行审核!理想情况下,资源应展示一些新内容,而不是重复现有资源。
- 一篇关于使用SetFit在文本分类中超越OpenAI GPT-3的博客文章。
- 另请参阅:Text classification task guide
- 一篇关于如何使用Finetune a non-English GPT-2 Model with Hugging Face的博客。
- 一篇关于如何使用不同的解码方法通过Transformers生成文本的博客,使用GPT-2。
- 一篇关于从零开始训练CodeParrot 🦜的博客,这是一个大型的GPT-2模型。
- 一篇关于使用Faster Text Generation with TensorFlow and XLA和GPT-2的博客。
- 一篇关于如何使用Megatron-LM训练语言模型的博客,使用GPT-2模型。
- 一个关于如何微调GPT2以生成你最喜欢的艺术家风格的歌词的笔记本。🌎
- 一个关于如何微调GPT2以生成你最喜欢的Twitter用户风格的推文的笔记本。🌎
- Causal language modeling 🤗 Hugging Face 课程的章节。
- OpenAIGPTLMHeadModel 由这个 因果语言建模示例脚本、文本生成示例脚本 和 notebook 支持。
- TFOpenAIGPTLMHeadModel 由这个 因果语言建模示例脚本 和 笔记本 支持。
- 另请参阅:Causal language modeling task guide
- 关于Byte-Pair Encoding tokenization的课程材料。
OpenAIGPTConfig
类 transformers.OpenAIGPTConfig
< source >( vocab_size = 40478 n_positions = 512 n_embd = 768 n_layer = 12 n_head = 12 afn = 'gelu' resid_pdrop = 0.1 embd_pdrop = 0.1 attn_pdrop = 0.1 layer_norm_epsilon = 1e-05 initializer_range = 0.02 summary_type = 'cls_index' summary_use_proj = True summary_activation = None summary_proj_to_labels = True summary_first_dropout = 0.1 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 40478) — GPT-2 模型的词汇量大小。定义了调用 OpenAIGPTModel 或 TFOpenAIGPTModel 时传递的inputs_ids
可以表示的不同标记的数量。 - n_positions (
int
, optional, defaults to 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024或2048)。 - n_embd (
int
, optional, 默认为 768) — 嵌入和隐藏状态的维度。 - n_layer (
int
, optional, 默认为 12) — Transformer 编码器中的隐藏层数。 - n_head (
int
, optional, 默认为 12) — Transformer 编码器中每个注意力层的注意力头数。 - afn (
str
或Callable
, 可选, 默认为"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - resid_pdrop (
float
, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。 - embd_pdrop (
int
, optional, defaults to 0.1) — 嵌入的dropout比率. - attn_pdrop (
float
, optional, defaults to 0.1) — 注意力的dropout比例. - layer_norm_epsilon (
float
, optional, defaults to 1e-05) — 用于层归一化层的epsilon值 - initializer_range (
float
, 可选, 默认值为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - summary_type (
str
, optional, defaults to"cls_index"
) — Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and OpenAIGPTDoubleHeadsModel.必须是以下选项之一:
"last"
: Take the last token hidden state (like XLNet)."first"
: Take the first token hidden state (like BERT)."mean"
: Take the mean of all tokens hidden states."cls_index"
: Supply a Tensor of classification token position (like GPT/GPT-2)."attn"
: Not implemented now, use multi-head attention.
- summary_use_proj (
bool
, optional, defaults toTrue
) — Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and OpenAIGPTDoubleHeadsModel.是否在向量提取后添加投影。
- summary_activation (
str
, optional) — Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and OpenAIGPTDoubleHeadsModel.传递
"tanh"
作为输出层的 tanh 激活函数,任何其他值将导致没有激活函数。 - summary_proj_to_labels (
bool
, optional, defaults toTrue
) — Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and OpenAIGPTDoubleHeadsModel.投影输出是否应该具有
config.num_labels
或config.hidden_size
类别。 - summary_first_dropout (
float
, optional, defaults to 0.1) — Argument used when doing sequence summary, used in the models OpenAIGPTDoubleHeadsModel and OpenAIGPTDoubleHeadsModel.在投影和激活后使用的丢弃比率。
这是用于存储OpenAIGPTModel或TFOpenAIGPTModel配置的配置类。它用于根据指定的参数实例化GPT模型,定义模型架构。使用默认值实例化配置将产生与OpenAI的GPT openai-community/openai-gpt架构类似的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
>>> # Initializing a GPT configuration
>>> configuration = OpenAIGPTConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = OpenAIGPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
OpenAIGPTTokenizer
类 transformers.OpenAIGPTTokenizer
< source >( vocab_file merges_file unk_token = '
构建一个GPT分词器。基于字节对编码,具有以下特点:
- 将所有输入转换为小写,
- 如果安装了
SpaCy
分词器和ftfy
,则使用它们进行预BPE分词,否则回退到BERT的BasicTokenizer
。
此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。
OpenAIGPTTokenizerFast
类 transformers.OpenAIGPTTokenizerFast
< source >( vocab_file = None merges_file = None tokenizer_file = None unk_token = '
构建一个“快速”的GPT分词器(基于HuggingFace的tokenizers库)。基于字节对编码,具有以下特点:
- 将所有输入转换为小写
- 使用BERT的BasicTokenizer进行预BPE分词
这个分词器继承自PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。
OpenAI 特定输出
类 transformers.models.openai.modeling_openai.OpenAIGPTDoubleHeadsModelOutput
< source >( loss: typing.Optional[torch.FloatTensor] = None mc_loss: typing.Optional[torch.FloatTensor] = None logits: FloatTensor = None mc_logits: FloatTensor = None hidden_states: typing.Optional[typing.Tuple[torch.FloatTensor]] = None attentions: typing.Optional[typing.Tuple[torch.FloatTensor]] = None )
参数
- loss (
torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 语言建模损失. - mc_loss (
torch.FloatTensor
of shape(1,)
, optional, 当提供mc_labels
时返回) — 多项选择分类损失. - logits (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax之前每个词汇标记的分数)。 - mc_logits (
torch.FloatTensor
of shape(batch_size, num_choices)
) — 多选分类头的预测分数(在SoftMax之前每个选择的分数)。 - hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.模型在每一层输出处的隐藏状态加上初始嵌入输出。
- attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.注意力权重在注意力softmax之后,用于计算自注意力头中的加权平均值。
用于预测两个句子是否连续的模型输出的基类。
类 transformers.models.openai.modeling_tf_openai.TFOpenAIGPTDoubleHeadsModelOutput
< source >( logits: tf.Tensor = None mc_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
- logits (
tf.Tensor
of shape(batch_size, num_choices, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax之前每个词汇标记的分数)。 - mc_logits (
tf.Tensor
of shape(batch_size, num_choices)
) — 多选分类头的预测分数(在SoftMax之前每个选择的分数)。 - hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.模型在每一层输出处的隐藏状态加上初始嵌入输出。
- attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.注意力权重在注意力softmax之后,用于计算自注意力头中的加权平均值。
用于预测两个句子是否连续的模型输出的基类。
OpenAIGPTModel
类 transformers.OpenAIGPTModel
< source >( config )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的OpenAI GPT变换器模型输出原始隐藏状态,没有任何特定的头部。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(OpenAIGPTConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
OpenAIGPTModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, OpenAIGPTModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = OpenAIGPTModel.from_pretrained("openai-community/openai-gpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
OpenAIGPTLMHeadModel
类 transformers.OpenAIGPTLMHeadModel
< source >( config )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
OpenAI GPT 模型转换器,顶部带有语言建模头(线性层,权重与输入嵌入绑定)。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.CausalLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于语言建模的标签。请注意,标签在模型内部被移位,即你可以设置labels = input_ids
索引在[-100, 0, ..., config.vocab_size]
中选择。所有设置为-100
的标签 将被忽略(掩码),损失仅针对[0, ..., config.vocab_size]
中的标签计算
返回
transformers.modeling_outputs.CausalLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(OpenAIGPTConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
OpenAIGPTLMHeadModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import torch
>>> from transformers import AutoTokenizer, OpenAIGPTLMHeadModel
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = OpenAIGPTLMHeadModel.from_pretrained("openai-community/openai-gpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
OpenAIGPTDoubleHeadsModel
类 transformers.OpenAIGPTDoubleHeadsModel
< source >( config )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
OpenAI GPT 模型转换器,顶部带有语言建模和多选分类头,例如用于 RocStories/SWAG 任务。这两个头是两个线性层。语言建模头的权重与 输入嵌入绑定,分类头将输入序列中指定分类标记索引的输入作为输入。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None mc_token_ids: typing.Optional[torch.LongTensor] = None labels: typing.Optional[torch.LongTensor] = None mc_labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.openai.modeling_openai.OpenAIGPTDoubleHeadsModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - mc_token_ids (
torch.LongTensor
of shape(batch_size, num_choices)
, optional, default to index of the last token of the input) — 每个输入序列中分类标记的索引。选择范围在[0, input_ids.size(-1) - 1]
之间。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于语言建模的标签。请注意,标签在模型内部被移位,即你可以设置labels = input_ids
索引在[-1, 0, ..., config.vocab_size]
中选择。所有设置为-100
的标签 将被忽略(掩码),损失仅针对[0, ..., config.vocab_size]
中的标签计算 - mc_labels (
torch.LongTensor
形状为(batch_size)
, 可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]
范围内, 其中 num_choices 是输入张量第二维的大小。(参见上面的 input_ids)
返回
transformers.models.openai.modeling_openai.OpenAIGPTDoubleHeadsModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.models.openai.modeling_openai.OpenAIGPTDoubleHeadsModelOutput 或者一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种
元素,具体取决于配置(OpenAIGPTConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 语言建模损失。 -
mc_loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供mc_labels
时返回) — 多项选择分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, num_choices, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
mc_logits (
torch.FloatTensor
形状为(batch_size, num_choices)
) — 多项选择分类头的预测分数(SoftMax 之前的每个选择的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或者当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或者当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
OpenAIGPTDoubleHeadsModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
>>> tokenizer.add_special_tokens(
... {"cls_token": "[CLS]"}
... ) # Add a [CLS] to the vocabulary (we should train it also!)
>>> model.resize_token_embeddings(len(tokenizer))
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
>>> lm_logits = outputs.logits
>>> mc_logits = outputs.mc_logits
OpenAIGPTForSequenceClassification
类 transformers.OpenAIGPTForSequenceClassification
< source >( config )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
原始的OpenAI GPT模型变压器,顶部带有序列分类头(线性层)。
OpenAIGPTForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如GPT-2)一样。由于它在最后一个标记上进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id
,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义pad_token_id
,它只需取批次中每一行的最后一个值。由于当传递inputs_embeds
而不是input_ids
时,它无法猜测填充标记,因此它会做同样的事情(取批次中每一行的最后一个值)。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(OpenAIGPTConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
OpenAIGPTForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, OpenAIGPTForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = OpenAIGPTForSequenceClassification.from_pretrained("openai-community/openai-gpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = OpenAIGPTForSequenceClassification.from_pretrained("openai-community/openai-gpt", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, OpenAIGPTForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = OpenAIGPTForSequenceClassification.from_pretrained("openai-community/openai-gpt", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = OpenAIGPTForSequenceClassification.from_pretrained(
... "openai-community/openai-gpt", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
TFOpenAIGPTModel
类 transformers.TFOpenAIGPTModel
< source >( config *inputs **kwargs )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的OpenAI GPT变换器模型输出原始隐藏状态,没有任何特定的头部。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
tf.Tensor
或Numpy array
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
或Numpy array
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估时具有不同的行为)。
返回
transformers.modeling_tf_outputs.TFBaseModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutput 或一个 tf.Tensor
的元组(如果
return_dict=False
被传递或当 config.return_dict=False
时),包含根据配置
(OpenAIGPTConfig) 和输入的各种元素。
-
last_hidden_state (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(tf.FloatTensor)
, 可选, 当output_hidden_states=True
被传递或当config.output_hidden_states=True
时返回) —tf.Tensor
的元组(一个用于嵌入的输出 + 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFOpenAIGPTModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFOpenAIGPTModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = TFOpenAIGPTModel.from_pretrained("openai-community/openai-gpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFOpenAIGPTLMHeadModel
类 transformers.TFOpenAIGPTLMHeadModel
< source >( config *inputs **kwargs )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
OpenAI GPT 模型转换器,顶部带有语言建模头(线性层,权重与输入嵌入绑定)。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFCausalLMOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
tf.Tensor
或Numpy array
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
或Numpy array
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估时具有不同的行为)。 - labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFCausalLMOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFCausalLMOutput 或一个由 tf.Tensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置(OpenAIGPTConfig)和输入的各种元素。
-
loss (
tf.Tensor
形状为(n,)
,可选,其中 n 是非掩码标签的数量,当提供labels
时返回) — 语言建模损失(用于下一个标记预测)。 -
logits (
tf.Tensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由tf.Tensor
组成的元组(一个用于嵌入的输出 + 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由tf.Tensor
组成的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFOpenAIGPTLMHeadModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFOpenAIGPTLMHeadModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-community/openai-gpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFOpenAIGPTDoubleHeadsModel
类 transformers.TFOpenAIGPTDoubleHeadsModel
< source >( config *inputs **kwargs )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
OpenAI GPT 模型转换器,顶部带有语言建模和多选分类头,例如用于 RocStories/SWAG 任务。这两个头是两个线性层。语言建模头的权重与 输入嵌入绑定,分类头将输入序列中指定分类标记索引的输入作为输入。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None mc_token_ids: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.models.openai.modeling_tf_openai.TFOpenAIGPTDoubleHeadsModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
tf.Tensor
或Numpy array
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
或Numpy array
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 - mc_token_ids (
tf.Tensor
或Numpy array
,形状为(batch_size, num_choices)
,可选,默认为输入序列的最后一个标记的索引) — 每个输入序列中分类标记的索引。选择范围在[0, input_ids.size(-1) - 1]
之间。
返回
transformers.models.openai.modeling_tf_openai.TFOpenAIGPTDoubleHeadsModelOutput 或 tuple(tf.Tensor)
一个 transformers.models.openai.modeling_tf_openai.TFOpenAIGPTDoubleHeadsModelOutput 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,具体取决于
配置 (OpenAIGPTConfig) 和输入。
-
logits (
tf.Tensor
形状为(batch_size, num_choices, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
mc_logits (
tf.Tensor
形状为(batch_size, num_choices)
) — 多项选择分类头的预测分数(SoftMax 之前的每个选择的分数)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当output_hidden_states=True
被传递或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFOpenAIGPTDoubleHeadsModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFOpenAIGPTDoubleHeadsModel
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = TFOpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
>>> # Add a [CLS] to the vocabulary (we should train it also!)
>>> tokenizer.add_special_tokens({"cls_token": "[CLS]"})
>>> model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
>>> print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> encoding = tokenizer(choices, return_tensors="tf")
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> inputs["mc_token_ids"] = tf.constant(
... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1]
... )[
... None, :
... ] # Batch size 1
>>> outputs = model(inputs)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
TFOpenAIGPTForSequenceClassification
类 transformers.TFOpenAIGPTForSequenceClassification
< source >( config *inputs **kwargs )
参数
- config (OpenAIGPTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
OpenAI GPT 模型转换器,顶部带有序列分类头(线性层)。
TFOpenAIGPTForSequenceClassification 使用最后一个标记进行分类,与其他因果模型(例如 GPT-2)相同。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id
,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义pad_token_id
,它只需取批次中每一行的最后一个值。由于在传递inputs_embeds
而不是input_ids
时无法猜测填充标记,它会执行相同的操作(取批次中每一行的最后一个值)。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - head_mask (
tf.Tensor
或Numpy array
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
或Numpy array
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估时具有不同的行为)。 - 标签 (
tf.Tensor
形状为(batch_size, sequence_length)
, 可选) — 用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,具体取决于
配置 (OpenAIGPTConfig) 和输入。
-
loss (
tf.Tensor
形状为(batch_size, )
, 可选, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
tf.Tensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFOpenAIGPTForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFOpenAIGPTForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = TFOpenAIGPTForSequenceClassification.from_pretrained("openai-community/openai-gpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFOpenAIGPTForSequenceClassification.from_pretrained("openai-community/openai-gpt", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss