Transformers 文档

MBart 和 MBart-50

MBart 和 MBart-50

Models Spaces

MBart概述

MBart模型由Yinhan Liu、Jiatao Gu、Naman Goyal、Xian Li、Sergey Edunov、Marjan Ghazvininejad、Mike Lewis和Luke Zettlemoyer在《多语言去噪预训练用于神经机器翻译》中提出。

根据摘要,MBART 是一种序列到序列的去噪自编码器,使用 BART 目标在许多语言的大规模单语语料库上进行预训练。mBART 是第一种通过去噪多语言全文来预训练完整序列到序列模型的方法之一,而之前的方法仅关注编码器、解码器或重构部分文本。

该模型由valhalla贡献。作者的代码可以在这里找到

MBart的训练

MBart 是一个多语言的编码器-解码器(序列到序列)模型,主要用于翻译任务。由于该模型是多语言的,它期望序列以不同的格式输入。在源文本和目标文本中都添加了一个特殊的语言ID标记。源文本的格式是 X [eos, src_lang_code],其中 X 是源文本。目标文本的格式是 [tgt_lang_code] X [eos]bos 从未被使用。

常规的 call() 将编码作为第一个参数传递的源文本格式或使用 text 关键字传递的源文本格式,并使用 text_label 关键字参数传递的目标文本格式。

  • 监督训练
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer

>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"

>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")

>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> # forward pass
>>> model(**inputs)
  • 生成

    在生成目标文本时,将decoder_start_token_id设置为目标语言的ID。以下示例展示了如何使用facebook/mbart-large-en-ro模型将英语翻译为罗马尼亚语。

>>> from transformers import MBartForConditionalGeneration, MBartTokenizer

>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
>>> article = "UN Chief Says There Is No Military Solution in Syria"
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Şeful ONU declară că nu există o soluţie militară în Siria"

MBart-50 概述

MBart-50 是在《多语言翻译与可扩展多语言预训练和微调》论文中由Yuqing Tang、Chau Tran、Xian Li、Peng-Jen Chen、Naman Goyal、Vishrav Chaudhary、Jiatao Gu、Angela Fan引入的。MBart-50是通过扩展原始的mbart-large-cc25检查点创建的,通过为额外的25种语言标记随机初始化向量来扩展其嵌入层,然后在50种语言上进行预训练。

根据摘要

多语言翻译模型可以通过多语言微调来创建。与仅在一个方向上进行微调不同,预训练模型同时在多个方向上进行微调。这表明预训练模型可以扩展到包含更多语言而不会损失性能。多语言微调在最强基线(无论是从头开始的多语言还是双语微调)上平均提高了1 BLEU,同时在从头开始的双语基线上平均提高了9.3 BLEU。

MBart-50的训练

MBart-50的文本格式与mBART略有不同。对于MBart-50,语言ID标记被用作源文本和目标文本的前缀,即文本格式为[lang_code] X [eos],其中lang_code是源文本的源语言ID和目标文本的目标语言ID,X分别是源文本或目标文本。

MBart-50 有自己的分词器 MBart50Tokenizer

  • 监督训练
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast

model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")

src_text = " UN Chief Says There Is No Military Solution in Syria"
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"

model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")

model(**model_inputs)  # forward pass
  • 生成

    要使用mBART-50多语言翻译模型生成,eos_token_id被用作decoder_start_token_id,并且目标语言ID被强制作为第一个生成的标记。要将目标语言ID强制作为第一个生成的标记,请将forced_bos_token_id参数传递给generate方法。以下示例展示了如何使用facebook/mbart-50-large-many-to-many检查点在印地语和法语之间以及阿拉伯语和英语之间进行翻译。

from transformers import MBartForConditionalGeneration, MBart50TokenizerFast

article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है"
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."

model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")

# translate Hindi to French
tokenizer.src_lang = "hi_IN"
encoded_hi = tokenizer(article_hi, return_tensors="pt")
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire en Syria."

# translate Arabic to English
tokenizer.src_lang = "ar_AR"
encoded_ar = tokenizer(article_ar, return_tensors="pt")
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "The Secretary-General of the United Nations says there is no military solution in Syria."

文档资源

MBartConfig

transformers.MBartConfig

< >

( vocab_size = 50265 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 classifier_dropout = 0.0 scale_embedding = False pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 forced_eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50265) — MBART 模型的词汇表大小。定义了调用 MBartModelTFMBartModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • d_model (int, optional, 默认为 1024) — 层和池化层的维度。
  • encoder_layers (int, optional, 默认为 12) — 编码器层数.
  • decoder_layers (int, optional, defaults to 12) — 解码器层数.
  • encoder_attention_heads (int, optional, 默认为 16) — Transformer编码器中每个注意力层的注意力头数。
  • decoder_attention_heads (int, optional, 默认为 16) — Transformer解码器中每个注意力层的注意力头数。
  • decoder_ffn_dim (int, optional, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • encoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • activation_function (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""silu""gelu_new"
  • dropout (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的dropout概率。
  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的丢弃比率。
  • activation_dropout (float, optional, defaults to 0.0) — 全连接层内部激活函数的丢弃比例。
  • classifier_dropout (float, optional, defaults to 0.0) — 分类器的丢弃比例。
  • max_position_embeddings (int, 可选, 默认为 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • init_std (float, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • encoder_layerdrop (float, 可选, 默认为 0.0) — 编码器的LayerDrop概率。有关更多详细信息,请参阅[LayerDrop论文](见 https://arxiv.org/abs/1909.11556)。
  • decoder_layerdrop (float, optional, 默认为 0.0) — 解码器的LayerDrop概率。有关更多详细信息,请参阅 [LayerDrop 论文](see https://arxiv.org/abs/1909.11556)。
  • scale_embedding (bool, optional, defaults to False) — 通过除以 sqrt(d_model) 来缩放嵌入。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)
  • forced_eos_token_id (int, 可选, 默认为 2) — 当达到max_length时,强制作为最后生成的令牌的ID。通常设置为eos_token_id.

这是用于存储MBartModel配置的配置类。它用于根据指定的参数实例化MBART模型,定义模型架构。使用默认值实例化配置将产生与MBART facebook/mbart-large-cc25架构相似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import MBartConfig, MBartModel

>>> # Initializing a MBART facebook/mbart-large-cc25 style configuration
>>> configuration = MBartConfig()

>>> # Initializing a model (with random weights) from the facebook/mbart-large-cc25 style configuration
>>> model = MBartModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MBartTokenizer

transformers.MBartTokenizer

< >

( vocab_file bos_token = '' eos_token = '' sep_token = '' cls_token = '' unk_token = '' pad_token = '' mask_token = '' tokenizer_file = None src_lang = None tgt_lang = None sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None additional_special_tokens = None **kwargs )

构建一个MBART分词器。

改编自 RobertaTokenizerXLNetTokenizer。基于 SentencePiece

分词方法是 用于源语言文档,以及 `

<tokens> <eos>` for target language documents.

示例:

>>> from transformers import MBartTokenizer

>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], 可选) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。一个MBART序列具有以下格式,其中X代表序列:

  • input_ids(用于编码器)X [eos, src_lang_code]
  • decoder_input_ids: (用于解码器) X [eos, tgt_lang_code]

BOS 从未被使用。序列对不是预期的使用场景,但它们将在没有分隔符的情况下处理。

MBartTokenizerFast

transformers.MBartTokenizerFast

< >

( vocab_file = None tokenizer_file = None bos_token = '' eos_token = '' sep_token = '' cls_token = '' unk_token = '' pad_token = '' mask_token = '' src_lang = None tgt_lang = None additional_special_tokens = None **kwargs )

构建一个“快速”的MBART分词器(由HuggingFace的tokenizers库支持)。基于 BPE

这个分词器继承自PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。

分词方法是 用于源语言文档,以及 `

<tokens> <eos>` for target language documents.

示例:

>>> from transformers import MBartTokenizerFast

>>> tokenizer = MBartTokenizerFast.from_pretrained(
...     "facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。特殊标记取决于调用set_lang。

MBART序列具有以下格式,其中X代表序列:

  • input_ids(用于编码器)X [eos, src_lang_code]
  • decoder_input_ids: (用于解码器) X [eos, tgt_lang_code]

BOS 从未被使用。序列对不是预期的使用场景,但它们将在没有分隔符的情况下处理。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

零的列表。

从传递给序列对分类任务的两个序列中创建一个掩码。mBART不使用token类型ID,因此返回一个零列表。

set_src_lang_special_tokens

< >

( src_lang )

将特殊令牌重置为源语言设置。没有前缀和后缀=[eos, src_lang_code]。

set_tgt_lang_special_tokens

< >

( 语言: str )

将特殊令牌重置为目标语言设置。没有前缀和后缀=[eos, tgt_lang_code]。

MBart50Tokenizer

transformers.MBart50Tokenizer

< >

( vocab_file src_lang = None tgt_lang = None eos_token = '' sep_token = '' cls_token = '' unk_token = '' pad_token = '' mask_token = '' sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • src_lang (str, optional) — 表示源语言的字符串。
  • tgt_lang (str, optional) — 表示目标语言的字符串。
  • eos_token (str, optional, defaults to "") — 序列结束标记。
  • sep_token (str, 可选, 默认为 "") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "") — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。
  • mask_token (str, 可选, 默认为 "") — 用于屏蔽值的标记。这是在训练此模型时使用的标记,用于屏蔽语言建模。这是模型将尝试预测的标记。
  • sp_model_kwargs (dict, optional) — Will be passed to the SentencePieceProcessor.__init__() method. The Python wrapper for SentencePiece can be used, among other things, to set:
    • enable_sampling: 启用子词正则化。

    • nbest_size: 用于unigram的采样参数。对于BPE-Dropout无效。

      • nbest_size = {0,1}: No sampling is performed.
      • nbest_size > 1: samples from the nbest_size results.
      • nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
    • alpha: 用于单字采样的平滑参数,以及BPE-dropout的合并操作丢弃概率。

构建一个MBart50分词器。基于SentencePiece

此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

示例:

>>> from transformers import MBart50Tokenizer

>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> # model(**model_inputs) should work

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。一个MBART-50序列具有以下格式,其中X代表序列:

  • input_ids(用于编码器)[src_lang_code] X [eos]
  • labels: (用于解码器) [tgt_lang_code] X [eos]

BOS 从未被使用。序列对不是预期的使用场景,但它们将在没有分隔符的情况下处理。

convert_tokens_to_string

< >

( tokens )

将一系列标记(字符串)转换为单个字符串。

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。
  • already_has_special_tokens (bool, optional, defaults to False) — 标记列表是否已经用模型的特殊标记格式化。

返回

List[int]

一个整数列表,范围在[0, 1]:1表示特殊标记,0表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model方法添加特殊标记时,会调用此方法。

set_src_lang_special_tokens

< >

( src_lang: str )

将特殊令牌重置为源语言设置。前缀=[src_lang_code],后缀=[eos]。

set_tgt_lang_special_tokens

< >

( tgt_lang: str )

将特殊令牌重置为目标语言设置。前缀=[tgt_lang_code],后缀=[eos]。

MBart50TokenizerFast

transformers.MBart50TokenizerFast

< >

( vocab_file = None src_lang = None tgt_lang = None tokenizer_file = None eos_token = '' sep_token = '' cls_token = '' unk_token = '' pad_token = '' mask_token = '' **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • src_lang (str, optional) — 表示源语言的字符串。
  • tgt_lang (str, optional) — 表示目标语言的字符串。
  • eos_token (str, 可选, 默认为 "") — 序列结束标记.
  • sep_token (str, optional, defaults to "") — 分隔符标记,用于从多个序列构建序列时使用,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "") — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。
  • mask_token (str, 可选, 默认为 "") — 用于屏蔽值的标记。这是在训练此模型时用于屏蔽语言建模的标记。这是模型将尝试预测的标记。

为mBART-50构建一个“快速”的MBART分词器(由HuggingFace的tokenizers库支持)。基于 BPE

这个分词器继承自PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。

示例:

>>> from transformers import MBart50TokenizerFast

>>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> # model(**model_inputs) should work

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。特殊标记取决于调用set_lang。

一个MBART-50序列具有以下格式,其中X代表序列:

  • input_ids(用于编码器)[src_lang_code] X [eos]
  • labels: (用于解码器) [tgt_lang_code] X [eos]

BOS 从未被使用。序列对不是预期的使用场景,但它们将在没有分隔符的情况下处理。

set_src_lang_special_tokens

< >

( src_lang: str )

将特殊令牌重置为源语言设置。前缀=[src_lang_code],后缀=[eos]。

set_tgt_lang_special_tokens

< >

( tgt_lang: str )

将特殊令牌重置为目标语言设置。前缀=[src_lang_code] 和后缀=[eos]。

Pytorch
Hide Pytorch content

MBartModel

transformers.MBartModel

< >

( config: MBartConfig )

参数

  • config (MBartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

裸MBART模型输出原始隐藏状态,没有任何特定的头部。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    MBart使用特定的语言ID令牌作为decoder_input_ids生成的起始令牌,该令牌根据源语言和目标语言而变化,例如 25004用于en_XX,25003用于de_DE。如果使用了past_key_values,则可以选择仅输入最后一个decoder_input_ids(参见past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头。在 [0, 1] 中选择的掩码值:
    • 1 表示头 未被屏蔽,
    • 0 表示头 被屏蔽.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的头部。选择的掩码值在 [0, 1] 中:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块中的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力机制中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的)形状为(batch_size, 1),而不是所有形状为(batch_size, sequence_length)decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MBartConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MBartModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, MBartModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartModel.from_pretrained("facebook/mbart-large-cc25")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

MBartForConditionalGeneration

transformers.MBartForConditionalGeneration

< >

( config: MBartConfig )

参数

  • config (MBartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

带有语言建模头的MBART模型。在微调预训练模型后,可以用于摘要生成。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    MBart使用特定的语言ID令牌作为decoder_input_ids生成的起始令牌,该令牌根据源语言和目标语言而变化,例如 25004用于en_XX,25003用于de_DE。如果使用了past_key_values,则可以选择仅输入最后一个decoder_input_ids(参见past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.Tensor 形状为 (encoder_layers, encoder_attention_heads), 可选) — 用于在编码器中屏蔽注意力模块中选定的头。掩码值在 [0, 1] 中选择:
    • 1 表示头 未被屏蔽,
    • 0 表示头 被屏蔽.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中屏蔽注意力模块中选定的头。在 [0, 1] 中选择的掩码值:
    • 1 表示头 未被屏蔽,
    • 0 表示头 被屏蔽.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块中的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力机制中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略 (掩码),损失仅针对标签在 [0, ..., config.vocab_size] 之间的标记计算。

返回

transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MBartConfig)和输入。

  • loss(形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回)— 语言建模损失。

  • logits(形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回)— 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_statestuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentionstuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 由 torch.FloatTensor 组成的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 由 torch.FloatTensor 组成的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state(形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_statestuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentionstuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 由 torch.FloatTensor 组成的元组(每层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MBartForConditionalGeneration 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

翻译示例:

>>> from transformers import AutoTokenizer, MBartForConditionalGeneration

>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")

>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")

>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'

掩码填充示例:

>>> from transformers import AutoTokenizer, MBartForConditionalGeneration

>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"

>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits

>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)

>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']

MBartForQuestionAnswering

transformers.MBartForQuestionAnswering

< >

( config )

参数

  • config (MBartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MBART模型,顶部带有用于抽取式问答任务(如SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算span start logitsspan end logits)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: Tensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    MBart使用特定的语言ID令牌作为decoder_input_ids生成的起始令牌,该令牌根据源语言和目标语言而变化,例如 25004用于en_XX,25003用于de_DE。如果使用了past_key_values,则可以选择仅输入最后一个decoder_input_ids(参见past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块中的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会被考虑用于计算损失。
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会用于计算损失。

返回

transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,取决于配置(MBartConfig)和输入。

  • loss(形状为 (1,)torch.FloatTensor可选,当提供 labels 时返回)— 总跨度提取损失是起始和结束位置的交叉熵之和。

  • start_logits(形状为 (batch_size, sequence_length)torch.FloatTensor)— 跨度起始分数(在 SoftMax 之前)。

  • end_logits(形状为 (batch_size, sequence_length)torch.FloatTensor)— 跨度结束分数(在 SoftMax 之前)。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回)— 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_statestuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentionstuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state(形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_statestuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)。

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentionstuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MBartForQuestionAnswering 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, MBartForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForQuestionAnswering.from_pretrained("facebook/mbart-large-cc25")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

MBartForSequenceClassification

transformers.MBartForSequenceClassification

< >

( config: MBartConfig **kwargs )

参数

  • config (MBartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MBart模型,顶部带有序列分类/头(在池化输出之上的线性层),例如用于GLUE任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    MBart使用特定的语言ID令牌作为decoder_input_ids生成的起始令牌,该令牌根据源语言和目标语言而变化,例如 25004用于en_XX,25003用于de_DE。如果使用了past_key_values,则可以选择仅输入最后一个decoder_input_ids(参见past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.Tensor 形状为 (decoder_layers, decoder_attention_heads), 可选) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor 形状为 (decoder_layers, decoder_attention_heads), 可选) — 用于在解码器中取消选择交叉注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MBartConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 label 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MBartForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, MBartForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, MBartForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MBartForSequenceClassification.from_pretrained(
...     "facebook/mbart-large-cc25", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

MBartForCausalLM

transformers.MBartForCausalLM

< >

( config )

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:
  • head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于屏蔽注意力模块中选定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于屏蔽交叉注意力模块中选定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head). The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model.

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的)形状为(batch_size, 1),而不是所有形状为(batch_size, sequence_length)decoder_input_ids

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略 (掩码),损失仅计算标签在 [0, ..., config.vocab_size] 之间的标记。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码 (参见 past_key_values)。
    • 1 表示 未屏蔽 的标记,
    • 0 表示 屏蔽 的标记。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MBartConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个词的预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 由长度为 config.n_layerstorch.FloatTensor 元组组成的元组,每个元组包含自注意力和交叉注意力层的缓存键, 值状态,如果模型用于编码器-解码器设置。仅在 config.is_decoder = True 时相关。

    包含预计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)以加速顺序解码。

示例:

>>> from transformers import AutoTokenizer, MBartForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
TensorFlow
Hide TensorFlow content

TFMBartModel

transformers.TFMBartModel

< >

( config: MBartConfig *inputs **kwargs )

参数

  • config (MBartConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸MBART模型输出原始隐藏状态,没有任何特定的头部。 此模型继承自TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。

TensorFlow 模型和层在 transformers 中接受两种格式作为输入:

  • 将所有输入作为关键字参数(如PyTorch模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,事情应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:

  • 仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同: model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!

调用

< >

( input_ids: TFModelInputType = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) transformers.modeling_tf_outputs.TFSeq2SeqModelOutputtuple(tf.Tensor)

参数

  • input_ids (tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (tf.Tensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    MBart使用特定的语言ID令牌作为decoder_input_ids生成的起始令牌,该令牌根据源语言和目标语言而变化,例如 25004用于en_XX,25003用于de_DE。如果使用了past_key_values,则可以选择仅输入最后一个decoder_input_ids(参见past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (tf.Tensor of shape (batch_size, target_sequence_length), optional) — 默认情况下会生成并忽略填充标记。不建议在大多数用例中设置此选项。
  • decoder_position_ids (tf.Tensor of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • head_mask (tf.Tensor 形状为 (encoder_layers, encoder_attention_heads), 可选) — 用于在编码器中取消选择注意力模块的某些头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • decoder_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于屏蔽交叉注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • encoder_outputs (tf.FloatTensor, optional) — 编码器最后一层输出的隐藏状态。用于解码器的交叉注意力。 形状为 (batch_size, sequence_length, hidden_size) 的序列
  • past_key_values (Tuple[Tuple[tf.Tensor]] 长度为 config.n_layers) — 包含预计算的注意力块的键和值隐藏状态。可用于加速解码。 如果使用了 past_key_values,用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有将其过去的键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids
  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选, 默认为 True) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。在训练期间设置为 False,在生成期间设置为 True
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True.
  • 训练 (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

返回

transformers.modeling_tf_outputs.TFSeq2SeqModelOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(MBartConfig)和输入的各种元素。

  • last_hidden_state (tf.Tensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (List[tf.Tensor], 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含解码器的预计算隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(tf.Tensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器每层输出的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(tf.Tensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(tf.Tensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,经过注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (tf.Tensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(tf.Tensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器每层输出的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(tf.Tensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

TFMBartModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFMBartModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = TFMBartModel.from_pretrained("facebook/mbart-large-cc25")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFMBartForConditionalGeneration

transformers.TFMBartForConditionalGeneration

< >

( config *inputs **kwargs )

参数

  • config (MBartConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

带有语言建模头的MBART模型。在微调预训练模型后,可以用于摘要生成。 该模型继承自TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法 (如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。

TensorFlow 模型和层在 transformers 中接受两种格式作为输入:

  • 将所有输入作为关键字参数(如PyTorch模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,事情应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:

  • 仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序: model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!

调用

< >

( input_ids: TFModelInputType = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Tuple[Tuple[tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSeq2SeqLMOutputtuple(tf.Tensor)

参数

  • input_ids (tf.Tensor of shape ({0})) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (tf.Tensor of shape ({0}), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (tf.Tensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    MBart使用特定的语言ID令牌作为decoder_input_ids生成的起始令牌,该令牌根据源语言和目标语言而变化,例如 25004用于en_XX,25003用于de_DE。如果使用了past_key_values,则可以选择仅输入最后一个decoder_input_ids(参见past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (tf.Tensor of shape (batch_size, target_sequence_length), optional) — 默认情况下会生成并忽略填充标记。不建议在大多数用例中设置此参数。
  • decoder_position_ids (tf.Tensor of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • head_mask (tf.Tensor 形状为 (encoder_layers, encoder_attention_heads), 可选) — 用于在编码器中屏蔽注意力模块中选定的头。在 [0, 1] 中选择的掩码值:
    • 1 表示头 未被屏蔽,
    • 0 表示头 被屏蔽.
  • decoder_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的头部。在 [0, 1] 中选择的掩码值:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (tf.Tensor 形状为 (decoder_layers, decoder_attention_heads), 可选) — 用于屏蔽交叉注意力模块中选定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • encoder_outputs (tf.FloatTensor, 可选) — 编码器最后一层的输出的隐藏状态。用于解码器的交叉注意力。 形状为 (batch_size, sequence_length, hidden_size) 是一个序列
  • past_key_values (Tuple[Tuple[tf.Tensor]] 长度为 config.n_layers) — 包含预计算的注意力块中的键和值隐藏状态。可用于加速解码。 如果使用了 past_key_values,用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有将其过去的键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids
  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选, 默认为 True) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。在训练期间设置为 False,在生成期间设置为 True
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True.
  • 训练 (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略 (掩码),损失仅针对标签在 [0, ..., config.vocab_size] 之间的标记计算。

返回

transformers.modeling_tf_outputs.TFSeq2SeqLMOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一个 tf.Tensor 元组(如果 return_dict=False 被传递或当 config.return_dict=False 时)包含各种元素,具体取决于 配置 (MBartConfig) 和输入。

  • loss (tf.Tensor 形状为 (n,), 可选, 其中 n 是非掩码标签的数量,当 labels 提供时返回) — 语言建模损失。

  • logits (tf.Tensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (List[tf.Tensor], 可选, 当 use_cache=True 被传递或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含解码器的预计算隐藏状态(注意力块中的键和值),可以用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(tf.Tensor), 可选, 当 output_hidden_states=True 被传递或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(tf.Tensor), 可选, 当 output_attentions=True 被传递或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(tf.Tensor), 可选, 当 output_attentions=True 被传递或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (tf.Tensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(tf.Tensor), 可选, 当 output_hidden_states=True 被传递或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(tf.Tensor), 可选, 当 output_attentions=True 被传递或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

TFMBartForConditionalGeneration 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

翻译示例:

>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration

>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")

>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="tf")

>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'

掩码填充示例:

>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration
>>> import tensorflow as tf

>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"

>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits

>>> masked_index = tf.where(input_ids[0] == tokenizer.mask_token_id)[0, 0]
>>> probs = tf.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = tf.math.top_k(probs, 5)

>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
JAX
Hide JAX content

FlaxMBartModel

class transformers.FlaxMBartModel

< >

( config: MBartConfig input_shape: 类型.元组[int] = (1, 1) seed: 整数 = 0 dtype: 数据类型 = _do_init: 布尔值 = 真 **kwargs )

参数

  • config (MBartConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16 (on GPUs) and jax.numpy.bfloat16 (on TPUs).

    这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。

    如果您希望更改模型参数的dtype,请参阅to_fp16()to_bf16().

裸MBart模型转换器输出原始隐藏状态,没有任何特定的头部。 此模型继承自FlaxPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头部等)。

该模型也是一个Flax Linen flax.nn.Module 子类。将其作为常规的Flax模块使用,并参考Flax文档以获取与一般用法和行为相关的所有信息。

最后,该模型支持JAX的固有特性,例如:

__call__

< >

( input_ids: 数组 attention_mask: 可选的[jax.Array] = 无 decoder_input_ids: 可选的[jax.Array] = 无 decoder_attention_mask: 可选的[jax.Array] = 无 position_ids: 可选的[jax.Array] = 无 decoder_position_ids: 可选的[jax.Array] = 无 output_attentions: 可选的[布尔] = 无 output_hidden_states: 可选的[布尔] = 无 return_dict: 可选的[布尔] = 无 train: 布尔 = 假 params: 字典 = 无 dropout_rng: <函数 PRNGKey 在 0x7f50727b7640> = 无 ) transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MBartConfig)和输入。

  • last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入输出 + 一个用于每层的输出)。

    解码器每层输出的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器的注意力权重,经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器交叉注意力层的注意力权重,经过注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入输出 + 一个用于每层的输出)。

    编码器每层输出的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    编码器的注意力权重,经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

FlaxMBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartModel

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartModel.from_pretrained("facebook/mbart-large-cc25")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

编码

< >

( input_ids: 数组 attention_mask: 可选[jax.Array] = 无 position_ids: 可选[jax.Array] = 无 output_attentions: 可选[布尔] = 无 output_hidden_states: 可选[布尔] = 无 return_dict: 可选[布尔] = 无 train: 布尔 = 假 params: 字典 = 无 dropout_rng: <函数 PRNGKey 在 0x7f50727b7640> = 无 ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 位置嵌入中每个输入序列标记的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个元组 torch.FloatTensor(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种 元素,取决于配置()和输入。

  • last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 元组 jnp.ndarray(一个用于嵌入的输出 + 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 元组 jnp.ndarray(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

解码

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: dict = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: dict = None dropout_rng: = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length)) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制中。
  • encoder_attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在[0, config.max_position_embeddings - 1]之间。
  • past_key_values (Dict[str, np.ndarray], optional, 由 init_cache 或传递先前的 past_key_values 返回) — 预计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length].
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置()和输入。

  • last_hidden_state (jnp.ndarray,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回)— 长度为 config.n_layerstuple(jnp.ndarray) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还包含 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True,则还包含交叉注意力块中的键和值),这些隐藏状态可以用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 由 jnp.ndarray 组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回)— 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回)— 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state

FlaxMBartForConditionalGeneration

transformers.FlaxMBartForConditionalGeneration

< >

( config: MBartConfig input_shape: 类型.元组[int] = (1, 1) seed: 整数 = 0 dtype: 数据类型 = _do_init: 布尔值 = 真 **kwargs )

参数

  • config (MBartConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16 (on GPUs) and jax.numpy.bfloat16 (on TPUs).

    这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。

    如果您希望更改模型参数的dtype,请参阅to_fp16()to_bf16().

带有语言建模头的MMBart模型。可以用于摘要生成。 该模型继承自FlaxPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入大小、修剪头等)。

该模型也是一个Flax Linen flax.nn.Module 子类。将其作为常规的Flax模块使用,并参考Flax文档以获取与一般用法和行为相关的所有信息。

最后,该模型支持JAX的固有特性,例如:

__call__

< >

( input_ids: 数组 attention_mask: 可选的[jax.Array] = 无 decoder_input_ids: 可选的[jax.Array] = 无 decoder_attention_mask: 可选的[jax.Array] = 无 position_ids: 可选的[jax.Array] = 无 decoder_position_ids: 可选的[jax.Array] = 无 output_attentions: 可选的[bool] = 无 output_hidden_states: 可选的[bool] = 无 return_dict: 可选的[bool] = 无 train: bool = 假 params: 字典 = 无 dropout_rng: = 无 ) transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 位置嵌入中每个输入序列标记的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,取决于配置(MBartConfig)和输入。

  • logits (jnp.ndarray 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(在 SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxMBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

摘要示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration, MBartConfig

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")

>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))

掩码填充示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"]

>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)

>>> tokenizer.decode(predictions).split()

编码

< >

( input_ids: 数组 attention_mask: 可选[jax.Array] = 无 position_ids: 可选[jax.Array] = 无 output_attentions: 可选[布尔] = 无 output_hidden_states: 可选[布尔] = 无 return_dict: 可选[布尔] = 无 train: 布尔 = 假 params: 字典 = 无 dropout_rng: <函数 PRNGKey 在 0x7f50727b7640> = 无 ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个元组 torch.FloatTensor(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种 元素,取决于配置()和输入。

  • last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 元组 jnp.ndarray(一个用于嵌入的输出 + 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 元组 jnp.ndarray(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

解码

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: dict = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: dict = None dropout_rng: = None ) transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length)) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力中。
  • encoder_attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.max_position_embeddings - 1].
  • past_key_values (Dict[str, np.ndarray], 可选, 由 init_cache 返回或传递先前的 past_key_values) — 预计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length].
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个元组 torch.FloatTensor(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种 元素,取决于配置()和输入。

  • logits(形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray)— 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • hidden_statestuple(jnp.ndarray)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    模型在每层输出处的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(jnp.ndarray)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    交叉注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回)— 长度为 config.n_layersjnp.ndarray 元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置。 仅在 config.is_decoder = True 时相关。

    包含预计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits

FlaxMBartForSequenceClassification

transformers.FlaxMBartForSequenceClassification

< >

( config: MBartConfig input_shape: 类型.元组[int] = (1, 1) seed: 整数 = 0 dtype: 数据类型 = _do_init: 布尔值 = 真 **kwargs )

参数

  • config (MBartConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16 (on GPUs) and jax.numpy.bfloat16 (on TPUs).

    这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。

    如果您希望更改模型参数的dtype,请参阅to_fp16()to_bf16().

MBart模型,顶部带有序列分类/头(在池化输出之上的线性层),例如用于GLUE任务。

该模型继承自FlaxPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头等)。

该模型也是一个Flax Linen flax.nn.Module 子类。将其作为常规的Flax模块使用,并参考Flax文档以获取与一般用法和行为相关的所有信息。

最后,该模型支持JAX的固有特性,例如:

__call__

< >

( input_ids: 数组 attention_mask: 可选[jax.Array] = 无 decoder_input_ids: 可选[jax.Array] = 无 decoder_attention_mask: 可选[jax.Array] = 无 position_ids: 可选[jax.Array] = 无 decoder_position_ids: 可选[jax.Array] = 无 output_attentions: 可选[布尔] = 无 output_hidden_states: 可选[布尔] = 无 return_dict: 可选[布尔] = 无 train: 布尔 = 假 params: 字典 = 无 dropout_rng: <函数 PRNGKey 在 0x7f50727b7640> = 无 ) transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MBartConfig)和输入。

  • logits (jnp.ndarray 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxMBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

编码

< >

( input_ids: 数组 attention_mask: 可选[jax.Array] = 无 position_ids: 可选[jax.Array] = 无 output_attentions: 可选[布尔] = 无 output_hidden_states: 可选[布尔] = 无 return_dict: 可选[布尔] = 无 train: 布尔 = 假 params: 字典 = 无 dropout_rng: <函数 PRNGKey 在 0x7f50727b7640> = 无 ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 位置嵌入中每个输入序列标记的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个元组 torch.FloatTensor(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种 元素,取决于配置()和输入。

  • last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 元组 jnp.ndarray(一个用于嵌入的输出 + 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 元组 jnp.ndarray(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

解码

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: dict = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: dict = None dropout_rng: = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length)) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制中。
  • encoder_attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • past_key_values (Dict[str, np.ndarray], 可选, 由 init_cache 返回或传递先前的 past_key_values) — 预计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length].
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置()和输入。

  • last_hidden_state (jnp.ndarray,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回)— 长度为 config.n_layerstuple(jnp.ndarray) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还包含 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True,则还包含交叉注意力块中的键和值),这些隐藏状态可以用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 由 jnp.ndarray 组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回)— 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回)— 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state

FlaxMBartForQuestionAnswering

transformers.FlaxMBartForQuestionAnswering

< >

( config: MBartConfig input_shape: 类型.元组[int] = (1, 1) seed: 整数 = 0 dtype: 数据类型 = _do_init: 布尔值 = 真 **kwargs )

参数

  • config (MBartConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16 (on GPUs) and jax.numpy.bfloat16 (on TPUs).

    这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。

    如果您希望更改模型参数的dtype,请参阅to_fp16()to_bf16().

MBart 模型,顶部带有用于抽取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算 span start logitsspan end logits)。

该模型继承自FlaxPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头等)。

该模型也是一个Flax Linen flax.nn.Module 子类。将其作为常规的Flax模块使用,并参考Flax文档以获取与一般用法和行为相关的所有信息。

最后,该模型支持JAX的固有特性,例如:

__call__

< >

( input_ids: 数组 attention_mask: 可选的[jax.Array] = 无 decoder_input_ids: 可选的[jax.Array] = 无 decoder_attention_mask: 可选的[jax.Array] = 无 position_ids: 可选的[jax.Array] = 无 decoder_position_ids: 可选的[jax.Array] = 无 output_attentions: 可选的[bool] = 无 output_hidden_states: 可选的[bool] = 无 return_dict: 可选的[bool] = 无 train: bool = 假 params: 字典 = 无 dropout_rng: = 无 ) transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 位置嵌入中每个输入序列标记的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MBartConfig)和输入。

  • start_logits (jnp.ndarray 形状为 (batch_size, sequence_length)) — 跨度开始分数(在 SoftMax 之前)。

  • end_logits (jnp.ndarray 形状为 (batch_size, sequence_length)) — 跨度结束分数(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(jnp.ndarray)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(jnp.ndarray) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxMBartPreTrainedModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartForQuestionAnswering.from_pretrained("facebook/mbart-large-cc25")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

编码

< >

( input_ids: 数组 attention_mask: 可选[jax.Array] = 无 position_ids: 可选[jax.Array] = 无 output_attentions: 可选[布尔] = 无 output_hidden_states: 可选[布尔] = 无 return_dict: 可选[布尔] = 无 train: 布尔 = 假 params: 字典 = 无 dropout_rng: <函数 PRNGKey 在 0x7f50727b7640> = 无 ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), 可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围在 [0, config.max_position_embeddings - 1] 之间。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个元组 torch.FloatTensor(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种 元素,取决于配置()和输入。

  • last_hidden_state (jnp.ndarray 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 元组 jnp.ndarray(一个用于嵌入的输出 + 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 元组 jnp.ndarray(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

解码

< >

( decoder_input_ids encoder_outputs encoder_attention_mask: typing.Optional[jax.Array] = None decoder_attention_mask: typing.Optional[jax.Array] = None decoder_position_ids: typing.Optional[jax.Array] = None past_key_values: dict = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None train: bool = False params: dict = None dropout_rng: = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length)) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力中。
  • encoder_attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.max_position_embeddings - 1].
  • past_key_values (Dict[str, np.ndarray], 可选, 由 init_cache 返回或传递先前的 past_key_values) — 预计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length].
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置()和输入。

  • last_hidden_state (jnp.ndarray,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray))可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回)— 长度为 config.n_layerstuple(jnp.ndarray) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还包含 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True,则还包含交叉注意力块中的键和值),这些隐藏状态可以用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 由 jnp.ndarray 组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回)— 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回)— 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration

>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
< > Update on GitHub