Transformers 文档

最有价值球员

MVP

概述

MVP模型由Tianyi Tang、Junyi Li、Wayne Xin Zhao和Ji-Rong Wen在MVP: Multi-task Supervised Pre-training for Natural Language Generation中提出。

根据摘要,

  • MVP 遵循标准的 Transformer 编码器-解码器架构。
  • MVP 使用标注数据集进行监督预训练。
  • MVP 还具有特定任务的软提示,以激发模型执行特定任务的能力。
  • MVP 专为自然语言生成而设计,可适应广泛的生成任务,包括但不限于摘要、数据到文本生成、开放式对话系统、故事生成、问答、问题生成、任务导向对话系统、常识生成、释义生成、文本风格转换和文本简化。我们的模型还可以适应自然语言理解任务,如序列分类和(抽取式)问答。

该模型由Tianyi Tang贡献。详细信息和说明可以在这里找到。

使用提示

  • 我们发布了一系列模型 这里,包括MVP、带有任务特定提示的MVP以及多任务预训练变体。
  • 如果你想使用一个没有提示的模型(标准Transformer),你可以通过MvpForConditionalGeneration.from_pretrained('RUCAIBox/mvp')加载它。
  • 如果你想使用一个带有任务特定提示的模型,例如摘要生成,你可以通过MvpForConditionalGeneration.from_pretrained('RUCAIBox/mvp-summarization')加载它。
  • 我们的模型支持轻量级提示调优,遵循Prefix-tuning,使用方法set_lightweight_tuning()

使用示例

对于摘要生成,这是一个使用MVP和带有摘要特定提示的MVP的示例。

>>> from transformers import MvpTokenizer, MvpForConditionalGeneration

>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp")
>>> model_with_prompt = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-summarization")

>>> inputs = tokenizer(
...     "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.",
...     return_tensors="pt",
... )
>>> generated_ids = model.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
["Why You Shouldn't Quit Your Job"]

>>> generated_ids = model_with_prompt.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
["Don't do it if these are your reasons"]

对于数据到文本的生成,这是一个使用MVP和多任务预训练变体的示例。

>>> from transformers import MvpTokenizerFast, MvpForConditionalGeneration

>>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp")
>>> model_with_mtl = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text")

>>> inputs = tokenizer(
...     "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man",
...     return_tensors="pt",
... )
>>> generated_ids = model.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['Stan Lee created the character of Iron Man, a fictional superhero appearing in American comic']

>>> generated_ids = model_with_mtl.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.']

对于轻量级调优,,固定模型并仅调优提示,您可以使用随机初始化的提示或特定任务的提示加载MVP。我们的代码还支持按照原始论文使用BART进行前缀调优。

>>> from transformers import MvpForConditionalGeneration

>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp", use_prompt=True)
>>> # the number of trainable parameters (full tuning)
>>> sum(p.numel() for p in model.parameters() if p.requires_grad)
468116832

>>> # lightweight tuning with randomly initialized prompts
>>> model.set_lightweight_tuning()
>>> # the number of trainable parameters (lightweight tuning)
>>> sum(p.numel() for p in model.parameters() if p.requires_grad)
61823328

>>> # lightweight tuning with task-specific prompts
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text")
>>> model.set_lightweight_tuning()
>>> # original lightweight Prefix-tuning
>>> model = MvpForConditionalGeneration.from_pretrained("facebook/bart-large", use_prompt=True)
>>> model.set_lightweight_tuning()

资源

MvpConfig

transformers.MvpConfig

< >

( vocab_size = 50267 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 classifier_dropout = 0.0 scale_embedding = False use_cache = True pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 is_encoder_decoder = True decoder_start_token_id = 2 forced_eos_token_id = 2 use_prompt = False prompt_length = 100 prompt_mid_dim = 800 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50267) — MVP 模型的词汇表大小。定义了调用 MvpModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • d_model (int, optional, 默认为 1024) — 层和池化层的维度。
  • encoder_layers (int, optional, defaults to 12) — 编码器层数.
  • decoder_layers (int, optional, defaults to 12) — 解码器层数.
  • encoder_attention_heads (int, optional, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。
  • decoder_attention_heads (int, optional, defaults to 16) — Transformer解码器中每个注意力层的注意力头数。
  • decoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • encoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • activation_function (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""silu""gelu_new"
  • dropout (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的dropout概率。
  • attention_dropout (float, optional, 默认为 0.0) — 注意力概率的丢弃比率。
  • activation_dropout (float, optional, defaults to 0.0) — 全连接层内部激活的丢弃比例。
  • classifier_dropout (float, optional, defaults to 0.0) — 分类器的丢弃比率。
  • max_position_embeddings (int, optional, 默认为 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • init_std (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • encoder_layerdrop (float, optional, defaults to 0.0) — 编码器的LayerDrop概率。有关更多详细信息,请参阅[LayerDrop论文](see https://arxiv.org/abs/1909.11556)。
  • decoder_layerdrop (float, 可选, 默认为 0.0) — 解码器的LayerDrop概率。更多详情请参阅[LayerDrop论文](见 https://arxiv.org/abs/1909.11556)。
  • scale_embedding (bool, 可选, 默认为 False) — 通过除以 sqrt(d_model) 来缩放嵌入向量。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。
  • forced_eos_token_id (int, 可选, 默认为 2) — 当达到max_length时,强制作为最后生成的令牌的ID。通常设置为eos_token_id.
  • use_prompt (bool, optional, defaults to False) — 是否使用提示。
  • prompt_length (int, optional, 默认为 100) — 提示的长度.
  • prompt_mid_dim (int, optional, 默认为 800) — 提示中“中间”层的维度。

这是用于存储MvpModel配置的配置类。它用于根据指定的参数实例化一个MVP模型,定义模型架构。使用默认值实例化配置将产生与MVP RUCAIBox/mvp架构类似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import MvpConfig, MvpModel

>>> # Initializing a MVP RUCAIBox/mvp style configuration
>>> configuration = MvpConfig()

>>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration
>>> model = MvpModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

MvpTokenizer

transformers.MvpTokenizer

< >

( vocab_file merges_file errors = 'replace' bos_token = '' eos_token = '' sep_token = '' cls_token = '' unk_token = '' pad_token = '' mask_token = '' add_prefix_space = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, 可选, 默认为 "replace") — 解码字节为UTF-8时遵循的范式。更多信息请参见 bytes.decode.
  • bos_token (str, optional, defaults to "<s>") — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

    在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是cls_token

  • eos_token (str, optional, defaults to "</s>") — The end of sequence token.

    在使用特殊标记构建序列时,这不是用于序列结束的标记。 使用的标记是sep_token

  • sep_token (str, optional, defaults to "") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "") — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。
  • mask_token (str, 可选, 默认为 "") — 用于屏蔽值的标记。这是在训练此模型时用于屏蔽语言建模的标记。这是模型将尝试预测的标记。
  • add_prefix_space (bool, 可选, 默认为 False) — 是否在输入前添加一个初始空格。这允许将前导词视为任何其他词。(MVP 分词器通过前面的空格检测单词的开头)。

构建一个MVP分词器,它类似于RoBERTa分词器,使用字节级别的字节对编码。

这个分词器已经被训练成将空格视为标记的一部分(有点像sentencepiece),因此一个单词将会

无论它是否在句子的开头(没有空格),编码方式都会有所不同:

>>> from transformers import MvpTokenizer

>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

你可以通过在实例化此分词器或在某些文本上调用它时传递add_prefix_space=True来绕过这种行为,但由于模型不是以这种方式预训练的,这可能会导致性能下降。

当与is_split_into_words=True一起使用时,此分词器将在每个单词(即使是第一个单词)前添加一个空格。

此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。MVP序列具有以下格式:

  • 单一序列: X
  • 序列对: A B

convert_tokens_to_string

< >

( tokens )

将一系列标记(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

零的列表。

从传递给序列对分类任务的两个序列中创建一个掩码。MVP不使用标记类型ID,因此返回一个零列表。

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。
  • already_has_special_tokens (bool, optional, defaults to False) — 是否已经为模型格式化了带有特殊标记的标记列表。

返回

List[int]

一个整数列表,范围在[0, 1]:1表示特殊标记,0表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model方法添加特殊标记时,会调用此方法。

MvpTokenizerFast

transformers.MvpTokenizerFast

< >

( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '' eos_token = '' sep_token = '' cls_token = '' unk_token = '' pad_token = '' mask_token = '' add_prefix_space = False trim_offsets = True **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, 可选, 默认为 "replace") — 解码字节为UTF-8时遵循的范式。更多信息请参见 bytes.decode.
  • bos_token (str, optional, defaults to "<s>") — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

    在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是cls_token

  • eos_token (str, optional, defaults to "</s>") — The end of sequence token.

    在使用特殊标记构建序列时,这不是用于序列结束的标记。 使用的标记是sep_token

  • sep_token (str, 可选, 默认为 "") — 分隔符标记,用于从多个序列构建一个序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "") — 用于序列分类的分类器标记(对整个序列进行分类,而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。
  • mask_token (str, 可选, 默认为 "") — 用于屏蔽值的标记。这是在训练此模型时使用的标记,用于屏蔽语言建模。这是模型将尝试预测的标记。
  • add_prefix_space (bool, 可选, 默认为 False) — 是否在输入前添加一个初始空格。这允许将前导词视为任何其他词。(MVP 分词器通过前面的空格检测词的开头)。
  • trim_offsets (bool, optional, defaults to True) — 后处理步骤是否应修剪偏移量以避免包含空格。

构建一个“快速”的MVP分词器(基于HuggingFace的tokenizers库),该分词器源自GPT-2分词器,使用字节级别的字节对编码。

这个分词器已经被训练成将空格视为标记的一部分(有点像sentencepiece),因此一个单词将会

无论它是否在句子的开头(没有空格),编码方式都会有所不同:

>>> from transformers import MvpTokenizerFast

>>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]

>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]

你可以通过在实例化此分词器或在某些文本上调用它时传递add_prefix_space=True来绕过这种行为,但由于模型不是以这种方式预训练的,这可能会导致性能下降。

当与is_split_into_words=True一起使用时,此分词器需要使用add_prefix_space=True进行实例化。

这个分词器继承自PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

零的列表。

从传递给序列对分类任务的两个序列中创建一个掩码。MVP不使用标记类型ID,因此返回一个零列表。

MvpModel

transformers.MvpModel

< >

( config: MvpConfig )

参数

  • config (MvpConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

基本的MVP模型输出原始的隐藏状态,没有任何特定的头部。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    Mvp 使用 eos_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该阅读modeling_mvp._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力机制中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MvpConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MvpModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, MvpModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpModel.from_pretrained("RUCAIBox/mvp")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

MvpForConditionalGeneration

transformers.MvpForConditionalGeneration

< >

( config: MvpConfig )

参数

  • config (MvpConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

带有语言建模头的MVP模型。可以用于各种文本生成任务。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    Mvp 使用 eos_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该阅读modeling_mvp._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块的特定头的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头 未被掩码,
    • 0 表示头 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略 (掩码),损失仅针对标签在 [0, ..., config.vocab_size] 之间的标记计算。

返回

transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MvpConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

MvpForConditionalGeneration 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

摘要示例:

微调模型

>>> import torch
>>> from transformers import AutoTokenizer, MvpForConditionalGeneration

>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp")

>>> inputs = tokenizer(
...     "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.",
...     return_tensors="pt",
... )
>>> labels = tokenizer("Bad Reasons To Quit Your Job", return_tensors="pt")["input_ids"]

>>> loss = model(**inputs, labels=labels).loss
>>> loss.backward()

模型微调后的推理

>>> with torch.no_grad():
...     generated_ids = model.generate(**inputs)

>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)

MvpForSequenceClassification

transformers.MvpForSequenceClassification

< >

( config: MvpConfig **kwargs )

参数

  • config (MvpConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

Mvp模型,顶部带有序列分类/头(在池化输出之上的线性层),例如用于GLUE任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    Mvp 使用 eos_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该阅读modeling_mvp._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。 如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels > 1,则计算分类损失(交叉熵)。

MvpForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

num_labels类上微调模型

>>> import torch
>>> from transformers import AutoTokenizer, MvpForSequenceClassification

>>> num_labels = 2  # for example, this is a binary classification task
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForSequenceClassification.from_pretrained("RUCAIBox/mvp", num_labels=num_labels)

>>> inputs = tokenizer("Classify: Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor(1)  # the real label for inputs

>>> loss = model(**inputs, labels=labels).loss
>>> loss.backward()

模型微调后的推理

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax()

MvpForQuestionAnswering

transformers.MvpForQuestionAnswering

< >

( config )

参数

  • config (MvpConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

MVP模型,顶部带有跨度分类头,用于抽取式问答任务,如SQuAD(在隐藏状态输出顶部有一个线性层,用于计算span start logitsspan end logits)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: Tensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    Mvp 使用 eos_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    对于翻译和摘要训练,应提供decoder_input_ids。如果没有提供decoder_input_ids,模型将根据论文中的去噪预训练方法,通过将input_ids向右移动来创建此张量。

  • decoder_attention_mask (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids. Causal mask will also be used by default.

    如果你想改变填充行为,你应该阅读modeling_mvp._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块的特定头的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头 未被掩码,
    • 0 表示头 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选的) — 元组由 (last_hidden_state, 可选的: hidden_states, 可选的: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size), 可选的) 是编码器最后一层的输出隐藏状态序列。用于解码器的交叉注意力机制中。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。 如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置在计算损失时不被考虑。
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会用于计算损失。

MvpForQuestionAnswering 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

微调一个用于抽取式问答的模型,我们的模型也支持使用BartForConditionalGeneration进行生成式问答

>>> import torch
>>> from transformers import AutoTokenizer, MvpForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForQuestionAnswering.from_pretrained("RUCAIBox/mvp")

>>> inputs = tokenizer(
...     "Answer the following question: Who was Jim Henson? [SEP] Jim Henson was a nice puppet",
...     return_tensors="pt",
... )
>>> target_start_index = torch.tensor([18])
>>> target_end_index = torch.tensor([19])

>>> loss = model(**inputs, start_positions=target_start_index, end_positions=target_end_index).loss
>>> loss.backward()

模型微调后的推理

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> predict_answer = tokenizer.decode(predict_answer_tokens)

MvpForCausalLM

transformers.MvpForCausalLM

< >

( config )

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:
  • head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于屏蔽注意力模块中选定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于屏蔽交叉注意力模块中选定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head). The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model.

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),这些状态可用于(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择只输入最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的)形状为(batch_size, 1),而不是所有形状为(batch_size, sequence_length)decoder_input_ids

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略 (掩码),损失仅针对标签在 [0, ..., config.vocab_size] 之间的标记计算。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码 (参见 past_key_values)。
    • 1 表示 未屏蔽 的标记,
    • 0 表示 屏蔽 的标记。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(MvpConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个标记的预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 由长度为 config.n_layerstorch.FloatTensor 元组组成的元组,每个元组包含自注意力和交叉注意力层的缓存键, 值状态,如果模型用于编码器-解码器设置。仅在 config.is_decoder = True 时相关。

    包含预计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

示例:

>>> from transformers import AutoTokenizer, MvpForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForCausalLM.from_pretrained("RUCAIBox/mvp", add_cross_attention=False)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> logits = outputs.logits
>>> list(logits.shape)
[1, 8, 50267]
< > Update on GitHub