Transformers 文档

UMT5

UMT5

Models Spaces

概述

UMT5模型由Hyung Won Chung、Xavier Garcia、Adam Roberts、Yi Tay、Orhan Firat、Sharan Narang和Noah Constant在UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining中提出。

论文的摘要如下:

预训练的多语言大型语言模型通常使用基于温度的启发式采样来平衡不同语言之间的分布。然而,之前的工作并未系统地评估不同预训练语言分布在不同模型规模下的效果。在本文中,我们提出了一种新的采样方法,UniMax,它通过显式限制每种语言语料库的重复次数,提供了对主要语言更均匀的覆盖,同时减轻了对尾部语言的过拟合。我们在一系列多语言基准测试中进行了广泛的消融实验,测试了不同采样策略的效果,同时改变了模型规模。我们发现UniMax优于标准的基于温度的采样方法,并且随着规模的增加,其优势持续存在。作为我们贡献的一部分,我们发布了:(i) 一个改进和更新的mC4多语言语料库,包含107种语言的29万亿字符,以及(ii) 一套使用UniMax采样训练的umT5模型检查点。

谷歌发布了以下变体:

该模型由agemagicianstefan-it贡献。原始代码可以在这里找到。

使用提示

  • UMT5 仅在 mC4 上进行了预训练,不包括任何监督训练。 因此,与原始的 T5 模型不同,该模型在下游任务使用之前必须进行微调。
  • 由于umT5是以无监督方式进行预训练的,因此在单任务微调期间使用任务前缀没有真正的优势。如果您正在进行多任务微调,则应使用前缀。

与mT5的区别?

UmT5 基于 mT5,具有为每一层计算的非共享相对位置偏差。这意味着模型为每一层设置了 has_relative_bias。 转换脚本也不同,因为模型是以 t5x 的最新检查点格式保存的。

示例用法

>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")

>>> inputs = tokenizer(
...     "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
...     return_tensors="pt",
... )
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs))
['<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s>']

请参考T5的文档页面以获取更多提示、代码示例和笔记本。

UMT5Config

transformers.UMT5Config

< >

( vocab_size = 250112 d_model = 512 d_kv = 64 d_ff = 1024 num_layers = 8 num_decoder_layers = None num_heads = 6 relative_attention_num_buckets = 32 relative_attention_max_distance = 128 dropout_rate = 0.1 layer_norm_epsilon = 1e-06 initializer_factor = 1.0 feed_forward_proj = 'gated-gelu' is_encoder_decoder = True use_cache = True tokenizer_class = 'T5Tokenizer' tie_word_embeddings = True pad_token_id = 0 eos_token_id = 1 decoder_start_token_id = 0 classifier_dropout = 0.0 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 250112) — UMT5 模型的词汇表大小。定义了可以通过调用 UMT5ModelTFUMT5Model 时传递的 inputs_ids 表示的不同标记的数量。
  • d_model (int, optional, defaults to 512) — 编码器层和池化层的大小。
  • d_kv (int, 可选, 默认为 64) — 每个注意力头的键、查询、值投影的大小。d_kv 必须等于 d_model // num_heads.
  • d_ff (int, 可选, 默认为 1024) — 每个 UMT5Block 中中间前馈层的大小.
  • num_layers (int, optional, defaults to 8) — Transformer编码器中的隐藏层数量。
  • num_decoder_layers (int, optional) — Transformer解码器中的隐藏层数。如果未设置,将使用与num_layers相同的值。
  • num_heads (int, optional, defaults to 6) — Transformer编码器中每个注意力层的注意力头数。
  • relative_attention_num_buckets (int, optional, defaults to 32) — 每个注意力层使用的桶的数量。
  • relative_attention_max_distance (int, optional, 默认为 128) — 用于桶分离的较长序列的最大距离。
  • dropout_rate (float, optional, defaults to 0.1) — 所有 dropout 层的比率。
  • classifier_dropout (float, optional, defaults to 0.0) — 分类器的丢弃比率。
  • layer_norm_eps (float, optional, defaults to 1e-6) — 层归一化层使用的epsilon值。
  • initializer_factor (float, optional, 默认为 1) — 用于初始化所有权重矩阵的因子(应保持为1,内部用于初始化测试)。
  • feed_forward_proj (string, 可选, 默认为 "gated-gelu") — 要使用的前馈层类型。应为 "relu""gated-gelu" 之一。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。

这是用于存储UMT5Model配置的配置类。它用于根据指定的参数实例化一个UMT5模型,定义模型架构。使用默认值实例化配置将产生类似于UMT5 google/umt5-small架构的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

UMT5Model

transformers.UMT5Model

< >

( config )

参数

  • config (UMT5Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的UMT5模型变压器输出原始隐藏状态,没有任何特定的头部。

UMT5模型由Colin Raffel、Noam Shazeer、Adam Roberts、Katherine Lee、Sharan Narang、Michael Matena、Yanqi Zhou、Wei Li和Peter J. Liu在探索迁移学习的极限:统一的文本到文本转换器中提出。它是一个在文本到文本去噪生成设置中预训练的编码器解码器转换器。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

示例:

>>> from transformers import UMT5Model, AutoTokenizer

>>> model = UMT5Model.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> noisy_text = "UN Offizier sagt, dass weiter <extra_id_0> werden muss in Syrien."
>>> label = "<extra_id_0> verhandelt"
>>> inputs = tokenizer(inputs, return_tensors="pt")
>>> labels = tokenizer(label=label, return_tensors="pt")

>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

    要了解更多关于如何为预训练准备input_ids的信息,请查看UMT5 训练.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    UMT5 使用 pad_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    要了解更多关于如何为预训练准备decoder_input_ids的信息,请查看UMT5训练

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在编码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在解码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • cross_attn_head_mask (torch.Tensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在解码器中取消选择交叉注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。它用于在正确的位置更新缓存并推断完整的序列长度。

返回

transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(UMT5Config)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器每层输出的隐藏状态加上可选的初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,经过注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器每层输出的隐藏状态加上可选的初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

UMT5Model 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, UMT5Model

>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5Model.from_pretrained("google/umt5-small")

>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1

>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model.
>>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)

>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state

UMT5ForConditionalGeneration

transformers.UMT5ForConditionalGeneration

< >

( config )

参数

  • config (UMT5Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

UMT5 模型,顶部带有language modeling头。

UMT5模型由Colin Raffel、Noam Shazeer、Adam Roberts、Katherine Lee、Sharan Narang、Michael Matena、Yanqi Zhou、Wei Li和Peter J. Liu在探索迁移学习的极限:统一的文本到文本转换器中提出。它是一个在文本到文本去噪生成设置中预训练的编码器解码器转换器。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

示例:

>>> from transformers import UMT5ForConditionalGeneration, AutoTokenizer

>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="pt")

>>> outputs = model(**inputs)
>>> loss = outputs.loss

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None ) transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

    要了解更多关于如何为预训练准备input_ids的信息,请查看UMT5 训练.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    UMT5 使用 pad_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    要了解更多关于如何为预训练准备decoder_input_ids的信息,请查看UMT5训练

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在编码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在解码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • cross_attn_head_mask (torch.Tensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在解码器中取消选择交叉注意力模块中的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选的) — 元组由 (last_hidden_state, 可选的: hidden_states, 可选的: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力机制中。
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。它用于在正确的位置更新缓存并推断完整的序列长度。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [-100, 0, ..., config.vocab_size - 1] 范围内。所有设置为 -100 的标签将被忽略(掩码),损失仅计算在 [0, ..., config.vocab_size] 范围内的标签

返回

transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(UMT5Config)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

UMT5ForConditionalGeneration 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, UMT5ForConditionalGeneration

>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")

>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

>>> # inference
>>> input_ids = tokenizer("Studies have shown that <extra_id_0> good for you", return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)

UMT5EncoderModel

transformers.UMT5EncoderModel

< >

( config )

参数

  • config (UMT5Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的UMT5模型转换器输出编码器的原始隐藏状态,没有任何特定的头部。

UMT5模型由Colin Raffel、Noam Shazeer、Adam Roberts、Katherine Lee、Sharan Narang、Michael Matena、Yanqi Zhou、Wei Li和Peter J. Liu在探索迁移学习的极限:统一的文本到文本转换器中提出。它是一个在文本到文本去噪生成设置中预训练的编码器解码器转换器。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

示例:

>>> from transformers import UMT5EncoderModel, AutoTokenizer

>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="pt").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    要了解更多关于如何为预训练准备input_ids的信息,请查看UMT5 训练.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(UMT5Config)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

UMT5EncoderModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, UMT5EncoderModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
>>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state

UMT5ForSequenceClassification

transformers.UMT5ForSequenceClassification

< >

( config: UMT5Config )

参数

  • config (UMT5Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

UMT5模型,顶部带有序列分类/头(在池化输出之上的线性层),例如用于GLUE任务。

UMT5模型由Colin Raffel、Noam Shazeer、Adam Roberts、Katherine Lee、Sharan Narang、Michael Matena、Yanqi Zhou、Wei Li和Peter J. Liu在探索迁移学习的极限:统一的文本到文本转换器中提出。它是一个在文本到文本去噪生成设置中预训练的编码器解码器转换器。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

    要了解更多关于如何为预训练准备input_ids的信息,请查看UMT5 训练.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    UMT5 使用 pad_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    要了解更多关于如何为预训练准备decoder_input_ids的信息,请查看UMT5训练

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在编码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在解码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于在解码器中取消选择交叉注意力模块中特定头部的掩码。掩码值在 [0, 1]中选择:
    • 1 表示头部未被掩码,
    • 0 表示头部被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。它用于在正确的位置更新缓存并推断完整的序列长度。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.Seq2SeqSequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(UMT5Config)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 label 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)分数(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

UMT5ForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

UMT5ForTokenClassification

transformers.UMT5ForTokenClassification

< >

( config: UMT5Config )

参数

  • config (UMT5Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

UMT5 编码器模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。

UMT5模型由Colin Raffel、Noam Shazeer、Adam Roberts、Katherine Lee、Sharan Narang、Michael Matena、Yanqi Zhou、Wei Li和Peter J. Liu在探索迁移学习的极限:统一的文本到文本转换器中提出。它是一个在文本到文本去噪生成设置中预训练的编码器解码器转换器。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

    要了解更多关于如何为预训练准备input_ids的信息,请查看UMT5 训练.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    UMT5 使用 pad_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    要了解更多关于如何为预训练准备decoder_input_ids的信息,请查看UMT5训练

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在编码器中屏蔽自注意力模块中选定的头。屏蔽值在 [0, 1] 中选择:
    • 1 表示头 未被屏蔽,
    • 0 表示头 被屏蔽.
  • decoder_head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在解码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于在解码器中取消选择交叉注意力模块的特定头部的掩码。掩码值在 [0, 1]中选择:
    • 1 表示头部未被掩码,
    • 0 表示头部被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — 元组由 (last_hidden_state, optional: hidden_states, optional: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。它用于在正确的位置更新缓存并推断完整的序列长度。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算令牌分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(UMT5Config)和输入。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

UMT5ForTokenClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

UMT5ForQuestionAnswering

transformers.UMT5ForQuestionAnswering

< >

( config )

参数

  • config (UMT5Config) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

UMT5模型,顶部带有用于抽取式问答任务(如SQuAD)的跨度分类头(在隐藏状态输出之上的线性层用于计算span start logitsspan end logits)。

UMT5模型由Colin Raffel、Noam Shazeer、Adam Roberts、Katherine Lee、Sharan Narang、Michael Matena、Yanqi Zhou、Wei Li和Peter J. Liu在探索迁移学习的极限:统一的文本到文本转换器中提出。它是一个在文本到文本去噪生成设置中预训练的编码器解码器转换器。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None decoder_head_mask: typing.Optional[torch.FloatTensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

    要了解更多关于如何为预训练准备input_ids的信息,请查看UMT5 训练.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    UMT5 使用 pad_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

    要了解更多关于如何为预训练准备decoder_input_ids的信息,请查看UMT5训练

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在编码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于在解码器中屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部未被屏蔽,
    • 0 表示头部被屏蔽.
  • cross_attn_head_mask (torch.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于在解码器中取消选择交叉注意力模块中特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — 元组由 (last_hidden_state, optional: hidden_states, optional: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。它用于在正确的位置更新缓存并推断完整的序列长度。
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置在计算损失时不被考虑。
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置在计算损失时不被考虑。

返回

transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(UMT5Config)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度起始分数(在 SoftMax 之前)。

  • end_logits (torch.FloatTensor 形状为 (batch_size, sequence_length)) — 跨度结束分数(在 SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

UMT5ForQuestionAnswering 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

< > Update on GitHub