Transformers 文档

Bert生成

BertGeneration

概述

BertGeneration 模型是一种 BERT 模型,可以用于序列到序列任务,使用 EncoderDecoderModel,如 Sascha Rothe、Shashi Narayan 和 Aliaksei Severyn 在 Leveraging Pre-trained Checkpoints for Sequence Generation Tasks 中提出的。

论文的摘要如下:

大型神经模型的无监督预训练最近彻底改变了自然语言处理。通过从公开发布的检查点进行热启动,NLP从业者在多个基准测试中推动了最先进的技术,同时节省了大量的计算时间。到目前为止,重点主要集中在自然语言理解任务上。在本文中,我们展示了预训练检查点在序列生成中的有效性。我们开发了一个基于Transformer的序列到序列模型,该模型与公开可用的预训练BERT、GPT-2和RoBERTa检查点兼容,并对使用这些检查点初始化我们的模型(包括编码器和解码器)的效用进行了广泛的实证研究。我们的模型在机器翻译、文本摘要、句子分割和句子融合方面取得了新的最先进结果。

该模型由patrickvonplaten贡献。原始代码可以在这里找到。

使用示例和提示

该模型可以与EncoderDecoderModel结合使用,以利用两个预训练的BERT检查点进行后续微调:

>>> # leverage checkpoints for Bert2Bert model...
>>> # use BERT's cls token as BOS token and sep token as EOS token
>>> encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-large-uncased", bos_token_id=101, eos_token_id=102)
>>> # add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
>>> decoder = BertGenerationDecoder.from_pretrained(
...     "google-bert/bert-large-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102
... )
>>> bert2bert = EncoderDecoderModel(encoder=encoder, decoder=decoder)

>>> # create tokenizer...
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")

>>> input_ids = tokenizer(
...     "This is a long article to summarize", add_special_tokens=False, return_tensors="pt"
... ).input_ids
>>> labels = tokenizer("This is a short summary", return_tensors="pt").input_ids

>>> # train...
>>> loss = bert2bert(input_ids=input_ids, decoder_input_ids=labels, labels=labels).loss
>>> loss.backward()

预训练的EncoderDecoderModel也可以直接在模型中心获取,例如:

>>> # instantiate sentence fusion model
>>> sentence_fuser = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_discofuse")
>>> tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")

>>> input_ids = tokenizer(
...     "This is the first sentence. This is the second sentence.", add_special_tokens=False, return_tensors="pt"
... ).input_ids

>>> outputs = sentence_fuser.generate(input_ids)

>>> print(tokenizer.decode(outputs[0]))

提示:

  • BertGenerationEncoderBertGenerationDecoder 应该与 EncoderDecoder 结合使用。
  • 对于摘要、句子分割、句子融合和翻译,输入不需要特殊标记。 因此,不应在输入末尾添加EOS标记。

BertGenerationConfig

transformers.BertGenerationConfig

< >

( vocab_size = 50358 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 bos_token_id = 2 eos_token_id = 1 position_embedding_type = 'absolute' use_cache = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 50358) — BERT模型的词汇表大小。定义了调用BertGeneration时传递的inputs_ids可以表示的不同标记的数量。
  • hidden_size (int, optional, 默认为 1024) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 24) — Transformer 编码器中的隐藏层数。
  • num_attention_heads (int, optional, defaults to 16) — Transformer编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, 默认为 4096) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, optional, 默认为 0.1) — 注意力概率的丢弃比率。
  • max_position_embeddings (int, optional, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的epsilon值。
  • pad_token_id (int, optional, defaults to 0) — 填充标记id.
  • bos_token_id (int, optional, defaults to 2) — 流的开始标记id.
  • eos_token_id (int, optional, defaults to 1) — 流结束标记的ID。
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute", "relative_key", "relative_key_query" 中的一个。对于 位置嵌入,使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。 有关 "relative_key_query" 的更多信息,请参阅 方法 4Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。

这是用于存储BertGenerationPreTrainedModel配置的配置类。它用于根据指定的参数实例化一个BertGeneration模型,定义模型架构。使用默认值实例化配置将产生与BertGeneration google/bert_for_seq_generation_L-24_bbc_encoder 架构类似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import BertGenerationConfig, BertGenerationEncoder

>>> # Initializing a BertGeneration config
>>> configuration = BertGenerationConfig()

>>> # Initializing a model (with random weights) from the config
>>> model = BertGenerationEncoder(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BertGenerationTokenizer

transformers.BertGenerationTokenizer

< >

( vocab_file bos_token = '' eos_token = '' unk_token = '' pad_token = '' sep_token = '<::::>' sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常具有 .spm 扩展名),包含实例化分词器所需的词汇表。
  • bos_token (str, optional, defaults to "") — 序列的开始标记。
  • eos_token (str, 可选, 默认为 "") — 序列结束标记。
  • unk_token (str, 可选, 默认为 "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。
  • sep_token (str, 可选, 默认为 "< --:::>"): 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • sp_model_kwargs (dict, optional) — Will be passed to the SentencePieceProcessor.__init__() method. The Python wrapper for SentencePiece can be used, among other things, to set:
    • enable_sampling: 启用子词正则化。

    • nbest_size: 用于unigram的采样参数。对于BPE-Dropout无效。

      • nbest_size = {0,1}: No sampling is performed.
      • nbest_size > 1: samples from the nbest_size results.
      • nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
    • alpha: 用于单字采样的平滑参数,以及BPE-dropout的合并操作丢弃概率。

构建一个BertGeneration分词器。基于SentencePiece

此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

保存词汇表

< >

( 保存目录: str 文件名前缀: typing.Optional[str] = None )

BertGenerationEncoder

transformers.BertGenerationEncoder

< >

( config )

参数

  • config (BertGenerationConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的BertGeneration模型转换器输出原始隐藏状态,顶部没有任何特定的头部。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

该模型可以表现为编码器(仅具有自注意力)以及解码器,在这种情况下,在自注意力层之间添加了一层交叉注意力,遵循了Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser和Illia Polosukhin在Attention is all you need中描述的架构。

当利用Bert或Roberta检查点用于EncoderDecoderModel类时,应使用此模型,如Sascha Rothe、Shashi Narayan和Aliaksei Severyn在Leveraging Pre-trained Checkpoints for Sequence Generation Tasks中所述。

要作为解码器使用,模型需要使用配置中的is_decoder参数初始化为True。要在Seq2Seq模型中使用,模型需要同时使用is_decoder参数和add_cross_attention参数初始化为True;然后在前向传递中需要输入encoder_hidden_states

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:1 表示未掩码的标记,0 表示掩码的标记。
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(BertGenerationConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True,则还包含 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True,则还包含交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器交叉注意力层的注意力权重,在注意力 softmax 后,用于计算交叉注意力头中的加权平均值。

BertGenerationEncoder 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, BertGenerationEncoder
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BertGenerationDecoder

transformers.BertGenerationDecoder

< >

( config )

参数

  • config (BertGenerationConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

BertGeneration 模型,顶部带有language modeling头,用于CLM微调。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:
    • 1 表示 未掩码 的标记,
    • 0 表示 掩码 的标记。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算从左到右语言建模损失(下一个词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的 标记将被忽略(掩码),损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记计算
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 True,将返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(BertGenerationConfig)和输入而定的各种元素。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个令牌的预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇令牌的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 由长度为 config.n_layerstorch.FloatTensor 元组组成的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置。仅在 config.is_decoder = True 时相关。

    包含预计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

BertGenerationDecoder 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
>>> config.is_decoder = True
>>> model = BertGenerationDecoder.from_pretrained(
...     "google/bert_for_seq_generation_L-24_bbc_encoder", config=config
... )

>>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits
< > Update on GitHub