Transformers 文档

Gemma

Gemma

概述

Gemma模型由Google的Gemma团队在Gemma: 基于Gemini技术和研究的开放模型中提出。 Gemma模型在6T个标记上进行了训练,并发布了2b和7b两个版本。

论文的摘要如下:

这项工作介绍了Gemma,一个新的开放语言模型家族,展示了在语言理解、推理和安全性方面的学术基准测试中的强大性能。我们发布了两种规模的模型(20亿和70亿参数),并提供了预训练和微调的检查点。Gemma在18个基于文本的任务中的11个上优于类似规模的开放模型,并且我们对模型的安全性和责任方面进行了全面评估,同时详细描述了我们的模型开发过程。我们相信,负责任地发布大型语言模型对于提高前沿模型的安全性以及推动下一波大型语言模型创新至关重要

提示:

  • 原始检查点可以使用转换脚本 src/transformers/models/gemma/convert_gemma_weights_to_hf.py 进行转换

该模型由Arthur ZuckerYounes BelkadaSanchit GandhiPedro Cuenca贡献。

GemmaConfig

transformers.GemmaConfig

< >

( vocab_size = 256000 hidden_size = 3072 intermediate_size = 24576 num_hidden_layers = 28 num_attention_heads = 16 num_key_value_heads = 16 head_dim = 256 hidden_act = 'gelu_pytorch_tanh' hidden_activation = None max_position_embeddings = 8192 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 eos_token_id = 1 bos_token_id = 2 tie_word_embeddings = True rope_theta = 10000.0 attention_bias = False attention_dropout = 0.0 **kwargs )

参数

  • vocab_size (int, 可选, 默认为 256000) — Gemma 模型的词汇表大小。定义了可以通过调用 GemmaModel 时传递的 inputs_ids 表示的不同标记的数量
  • hidden_size (int, optional, 默认为 3072) — 隐藏表示的维度。
  • intermediate_size (int, 可选, 默认为 24576) — MLP 表示的维度。
  • num_hidden_layers (int, optional, 默认为 28) — Transformer 解码器中的隐藏层数量。
  • num_attention_heads (int, optional, 默认为 16) — Transformer解码器中每个注意力层的注意力头数。
  • num_key_value_heads (int, 可选, 默认为 16) — 这是用于实现分组查询注意力(Grouped Query Attention)的键值头数量。如果 num_key_value_heads=num_attention_heads,模型将使用多头注意力(MHA),如果 num_key_value_heads=1,模型将使用多查询注意力(MQA),否则将使用GQA。当 将多头检查点转换为GQA检查点时,每个组的键和值头应通过平均池化该组中的所有原始头来构建。 更多详细信息请查看 这篇论文。如果未指定,将默认为 num_attention_heads.
  • head_dim (int, optional, 默认为 256) — 注意力头的维度。
  • hidden_act (strfunction, 可选, 默认为 "gelu_pytorch_tanh") — 传统的激活函数。它被 hidden_activation 覆盖。
  • hidden_activation (strfunction, 可选) — 解码器中的非线性激活函数(函数或字符串)。如果未指定,将默认为 "gelu_pytorch_tanh""gelu_pytorch_tanh" 使用 "gelu" 激活函数的近似值。
  • max_position_embeddings (int, optional, defaults to 8192) — 此模型可能使用的最大序列长度。
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • rms_norm_eps (float, optional, defaults to 1e-06) — rms归一化层使用的epsilon值。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • pad_token_id (int, optional, 默认为 0) — 填充标记的id.
  • eos_token_id (int, optional, defaults to 1) — 流结束标记的ID。
  • bos_token_id (int, optional, defaults to 2) — 流的开始标记id.
  • tie_word_embeddings (bool, optional, defaults to True) — 是否绑定权重嵌入
  • rope_theta (float, optional, 默认为 10000.0) — RoPE 嵌入的基础周期。
  • attention_bias (bool, 默认为 False, 可选, 默认为 False) — 是否在自注意力机制中的查询、键、值和输出投影层中使用偏置。
  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的dropout比率.

这是用于存储GemmaModel配置的配置类。它用于根据指定的参数实例化一个Gemma模型,定义模型架构。使用默认值实例化配置将产生类似于Gemma-7B的配置。 例如:google/gemma-7b 配置对象继承自PretrainedConfig,可用于控制模型输出。有关更多信息,请阅读PretrainedConfig的文档。

>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

GemmaTokenizer

transformers.GemmaTokenizer

< >

( vocab_file unk_token = '' bos_token = '' eos_token = '' pad_token = '' sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None add_bos_token = True add_eos_token = False clean_up_tokenization_spaces = False use_default_system_prompt = False spaces_between_special_tokens = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • unk_token (strtokenizers.AddedToken, 可选, 默认为 "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • bos_token (strtokenizers.AddedToken, 可选, 默认为 "") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。
  • eos_token (strtokenizers.AddedToken, 可选, 默认为 "") — 序列结束标记。
  • pad_token (strtokenizers.AddedToken, 可选, 默认为 "") — 用于使令牌数组在批处理时大小相同的特殊令牌。然后将被注意力机制或损失计算忽略。
  • sp_model_kwargs (Dict[str, Any], Optional, optional) — Will be passed to the SentencePieceProcessor.__init__() method. The Python wrapper for SentencePiece can be used, among other things, to set:
    • enable_sampling: 启用子词正则化。

    • nbest_size: 用于unigram的采样参数。对于BPE-Dropout无效。

      • nbest_size = {0,1}: No sampling is performed.
      • nbest_size > 1: samples from the nbest_size results.
      • nbest_size < 0: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
    • alpha: 用于单字采样的平滑参数,以及BPE-dropout的合并操作丢弃概率。

  • add_bos_token (bool, 可选, 默认为 True) — 是否在序列的开头添加一个 bos_token
  • add_eos_token (bool, 可选, 默认为 False) — 是否在序列末尾添加一个 eos_token.
  • clean_up_tokenization_spaces (bool, 可选, 默认为 False) — 是否在解码后清理空格,清理包括移除可能的额外空格等潜在问题。
  • use_default_system_prompt (bool, 可选, 默认为 False) — 是否应使用Gemma的默认系统提示。
  • spaces_between_special_tokens (bool, optional, defaults to False) — 是否在特殊标记之间添加空格。

构建一个Gemma分词器。基于字节级别的字节对编码。默认的填充标记未设置,因为原始模型中没有填充标记。

convert_tokens_to_string

< >

( tokens )

将一系列标记(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

根据给定序列的token type IDs列表。

从传递给序列对分类任务的两个序列中创建一个掩码。一个ALBERT

序列对掩码具有以下格式:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1 为 None,则只返回掩码的第一部分(0s)。

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。
  • already_has_special_tokens (bool, 可选, 默认为 False) — 是否已经为模型格式化了包含特殊标记的标记列表。

返回

List[int]

一个整数列表,范围在[0, 1]:1表示特殊标记,0表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model方法添加特殊标记时,会调用此方法。

get_vocab

< >

( )

返回词汇表作为字典

保存词汇表

< >

( save_directory filename_prefix: typing.Optional[str] = None ) Tuple(str)

参数

  • save_directory (str) — 保存词汇表的目录。

返回

Tuple(str)

保存文件的路径。

将词汇表和特殊标记文件保存到一个目录中。

tokenize

< >

( text: 文本输入 **kwargs )

参数

  • 文本 — 文本输入

简单地调用 PreTrainedTokenizer 的方法

GemmaTokenizerFast

transformers.GemmaTokenizerFast

< >

( vocab_file = None tokenizer_file = None clean_up_tokenization_spaces = False unk_token = '' bos_token = '' eos_token = '' pad_token = '' add_bos_token = True add_eos_token = False **kwargs )

参数

  • vocab_file (str, 可选) — SentencePiece 文件(通常具有 .model 扩展名),包含实例化分词器所需的词汇表。
  • tokenizer_file (str, optional) — tokenizers 文件(通常具有 .json 扩展名),包含加载分词器所需的所有内容。
  • clean_up_tokenization_spaces (bool, optional, defaults to False) — 是否在解码后清理空格,清理包括移除可能的额外空格等潜在问题。
  • unk_token (strtokenizers.AddedToken, 可选, 默认为 "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为该标记。
  • bos_token (strtokenizers.AddedToken, 可选, 默认为 "") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。
  • eos_token (strtokenizers.AddedToken, 可选, 默认为 "") — 序列结束标记。
  • pad_token (str, optional, defaults to "") — 填充标记
  • add_bos_token (bool, 可选, 默认为 True) — 是否在序列的开头添加一个 bos_token
  • add_eos_token (bool, optional, defaults to False) — 是否在序列末尾添加一个eos_token

快速构建一个Gemma分词器。基于字节级别的字节对编码。

这主要使用了ByteFallback并且没有前缀空格。规范化应用于将" "替换为"▁"

>>> from transformers import GemmaTokenizerFast

>>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
>>> tokenizer.encode("Hello this is a test")
[2, 4521, 736, 603, 476, 2121]

如果你想更改bos_tokeneos_token,请确保在初始化模型时指定它们,或者调用tokenizer.update_post_processor()以确保后处理正确完成(否则编码序列的第一个标记和最后一个标记的值将不正确)。更多详情,请查看[后处理器] (https://huggingface.co/docs/tokenizers/api/post-processors) 文档。

这个分词器继承自PreTrainedTokenizerFast,其中包含了大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。

update_post_processor

< >

( )

使用当前的bos_tokeneos_token更新底层后处理器。

GemmaModel

transformers.GemmaModel

< >

( config: GemmaConfig )

参数

  • config (GemmaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
  • config — GemmaConfig

裸的Gemma模型输出原始的隐藏状态,没有任何特定的头部。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

Transformer解码器由config.num_hidden_layers层组成。每一层都是一个GemmaDecoderLayer

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids不同, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。

GemmaModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

GemmaForCausalLM

transformers.GemmaForCausalLM

< >

( config )

前进

< >

( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None num_logits_to_keep: int = 0 **loss_kwargs ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
  • Args — labels (torch.LongTensor of shape (batch_size, sequence_length), optional): Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size] or -100 (see input_ids docstring). Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

    num_logits_to_keep (int, 可选): 计算最后num_logits_to_keep个token的logits。如果为0,则计算所有input_ids的logits(特殊情况)。生成时只需要最后一个token的logits,仅计算该token的logits可以节省内存,这对于长序列或大词汇量来说非常重要。

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(GemmaConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个词的预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量)

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GemmaForCausalLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, GemmaForCausalLM

>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")

>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"

GemmaForSequenceClassification

transformers.GemmaForSequenceClassification

< >

( config )

参数

  • config (GemmaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Gemma 模型转换器,顶部带有序列分类头(线性层)。

GemmaForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)所做的那样。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义pad_token_id,它只需取批次中每一行的最后一个值。由于在传递inputs_embeds而不是input_ids时无法猜测填充标记,它会执行相同的操作(取批次中每一行的最后一个值)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

GemmaForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

GemmaForTokenClassification

transformers.GemmaForTokenClassification

< >

( config )

参数

  • config (GemmaConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化时,不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。

Gemma 模型转换器,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,可以选择只输入最后的input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

    允许两种格式:

    • a Cache instance, see our kv cache guide;
    • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

    模型将输出与输入相同的缓存格式。如果没有传递past_key_values,将返回旧的缓存格式。

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后input_ids(那些没有将其过去键值状态提供给此模型的input_ids),而不是形状为(batch_size, sequence_length)的所有input_ids

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • cache_position (torch.LongTensor of shape (sequence_length), optional) — 表示输入序列标记在序列中的位置的索引。与position_ids不同, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
  • labels (torch.LongTensor 形状为 (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.TokenClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(GemmaConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.num_labels)) — 分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GemmaForTokenClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, GemmaForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
>>> model = GemmaForTokenClassification.from_pretrained("google/gemma-7b")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

FlaxGemmaModel

transformers.FlaxGemmaModel

< >

( config: GemmaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = _do_init: bool = True **kwargs )

参数

  • config (GemmaConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16, or jax.numpy.bfloat16.

    这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。

    如果您希望更改模型参数的dtype,请参阅to_fp16()to_bf16().

裸的Gemma模型转换器输出原始隐藏状态,顶部没有任何特定的头部。

该模型继承自FlaxPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头等)。

该模型也是一个Flax Linen flax.nn.Module 子类。将其作为常规的Flax模块使用,并参考Flax文档以获取与一般用法和行为相关的所有信息。

最后,该模型支持JAX的固有特性,例如:

__call__

< >

( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, input_ids_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,则可以选择性地仅输入最后一个decoder_input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Dict[str, np.ndarray], 可选, 由 init_cache 返回或传递先前的 past_key_values) — 预计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length].
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(GemmaConfig)和输入。

  • last_hidden_state (jnp.ndarray,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 jnp.ndarray 组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxGemmaPreTrainedModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。为了获得正确的结果,你应该使用 openlm-research/open_llama_3b_v2 而不是 google/gemma-2b。如果在加载该检查点时出现内存不足的情况,你可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例:

>>> from transformers import AutoTokenizer, FlaxGemmaModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
>>> model = FlaxGemmaModel.from_pretrained("google/gemma-2b")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxGemmaForCausalLM

transformers.FlaxGemmaForCausalLM

< >

( config: GemmaConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = _do_init: bool = True **kwargs )

参数

  • config (GemmaConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16, or jax.numpy.bfloat16.

    这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。

    如果您希望更改模型参数的dtype,请参阅to_fp16()to_bf16().

Gemma 模型转换器,顶部带有语言建模头(线性层)。

该模型继承自FlaxPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头等)。

该模型也是一个Flax Linen flax.nn.Module 子类。将其作为常规的Flax模块使用,并参考Flax文档以获取与一般用法和行为相关的所有信息。

最后,该模型支持JAX的固有特性,例如:

__call__

< >

( input_ids attention_mask = None position_ids = None params: dict = None past_key_values: dict = None dropout_rng: = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, input_ids_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    如果使用了past_key_values,则可以选择性地仅输入最后一个decoder_input_ids(参见past_key_values)。

    如果你想改变填充行为,你应该阅读modeling_opt._prepare_decoder_attention_mask 并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。

    • 1 indicates the head is not masked,
    • 0 indicates the head is masked.
  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

    什么是位置ID?

  • past_key_values (Dict[str, np.ndarray], optional, 由 init_cache 或传递先前的 past_key_values 返回) — 预计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预计算的键和值隐藏状态的形状为 [batch_size, max_length].
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(GemmaConfig)和输入。

  • logits (jnp.ndarray 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(在 SoftMax 之前的每个词汇标记的分数)。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 jnp.ndarray 组成的元组(一个用于嵌入的输出 + 一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 jnp.ndarray 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxGemmaPreTrainedModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

此示例使用随机模型,因为真实模型都非常大。为了获得正确的结果,你应该使用 openlm-research/open_llama_3b_v2 而不是 google/gemma-2b。如果在加载该检查点时出现内存不足的情况,你可以尝试在 from_pretrained 调用中添加 device_map="auto"

示例:

>>> from transformers import AutoTokenizer, FlaxGemmaForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
>>> model = FlaxGemmaForCausalLM.from_pretrained("google/gemma-2b")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]
< > Update on GitHub