Transformers 文档

PhoBERT

PhoBERT

概述

PhoBERT模型由Dat Quoc Nguyen和Anh Tuan Nguyen在PhoBERT: Pre-trained language models for Vietnamese中提出。

论文的摘要如下:

我们推出了两个版本的PhoBERT,分别是PhoBERT-base和PhoBERT-large,这是首个为越南语预训练的大规模单语语言模型。实验结果表明,PhoBERT始终优于最近最好的预训练多语言模型XLM-R(Conneau等,2020),并在多个越南语特定的NLP任务中提升了最先进的水平,包括词性标注、依存句法分析、命名实体识别和自然语言推理。

该模型由dqnguyen贡献。原始代码可以在这里找到。

使用示例

>>> import torch
>>> from transformers import AutoModel, AutoTokenizer

>>> phobert = AutoModel.from_pretrained("vinai/phobert-base")
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")

>>> # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
>>> line = "Tôi là sinh_viên trường đại_học Công_nghệ ."

>>> input_ids = torch.tensor([tokenizer.encode(line)])

>>> with torch.no_grad():
...     features = phobert(input_ids)  # Models outputs are now tuples

>>> # With TensorFlow 2.0+:
>>> # from transformers import TFAutoModel
>>> # phobert = TFAutoModel.from_pretrained("vinai/phobert-base")

PhoBERT 的实现与 BERT 相同,除了分词部分。有关配置类及其参数的信息,请参阅 BERT 文档。下面记录了 PhoBERT 特定的分词器。

PhobertTokenizer

transformers.PhobertTokenizer

< >

( vocab_file merges_file bos_token = '' eos_token = '' sep_token = '' cls_token = '' unk_token = '' pad_token = '' mask_token = '' **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • bos_token (st, optional, defaults to "<s>") — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

    在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是cls_token

  • eos_token (str, optional, defaults to "</s>") — The end of sequence token.

    在使用特殊标记构建序列时,这不是用于序列结束的标记。 使用的标记是sep_token

  • sep_token (str, optional, defaults to "") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "") — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • mask_token (str, optional, defaults to "") — 用于屏蔽值的标记。这是在训练此模型时用于屏蔽语言建模的标记。这是模型将尝试预测的标记。

构建一个PhoBERT分词器。基于字节对编码。

此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

add_from_file

< >

( f )

从文本文件加载预先存在的字典并将其符号添加到此实例中。

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。一个PhoBERT序列具有以下格式:

  • 单一序列: X
  • 序列对: A B

convert_tokens_to_string

< >

( tokens )

将一系列标记(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

零的列表。

从传递给序列对分类任务的两个序列中创建一个掩码。PhoBERT不使用token类型ID,因此返回一个零列表。

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。
  • already_has_special_tokens (bool, optional, defaults to False) — 标记列表是否已经用模型的特殊标记格式化。

返回

List[int]

一个整数列表,范围在[0, 1]:1表示特殊标记,0表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model方法添加特殊标记时,会调用此方法。

< > Update on GitHub