Transformers 文档

ERNIE

ERNIE

概述

ERNIE 是百度提出的一系列强大模型,特别是在中文任务中, 包括 ERNIE1.0, ERNIE2.0, ERNIE3.0, ERNIE-Gram, ERNIE-health 等。

这些模型由nghuyong贡献,官方代码可以在PaddleNLP(在PaddlePaddle中)找到。

使用示例

ernie-1.0-base-zh为例:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")

模型检查点

模型名称 语言 描述
ernie-1.0-base-zh 中文 层数:12, 头数:12, 隐藏层:768
ernie-2.0-base-en 英语 层数:12, 头数:12, 隐藏层:768
ernie-2.0-large-en 英语 层数:24, 头数:16, 隐藏层:1024
ernie-3.0-base-zh 中文 层数:12, 头数:12, 隐藏层:768
ernie-3.0-medium-zh 中文 层数:6, 头数:12, 隐藏层:768
ernie-3.0-mini-zh 中文 层数:6, 头数:12, 隐藏层:384
ernie-3.0-micro-zh 中文 层数:4, 头数:12, 隐藏层:384
ernie-3.0-nano-zh 中文 层数:4, 头数:12, 隐藏层:312
ernie-health-zh 中文 层数:12, 头数:12, 隐藏层:768
ernie-gram-zh 中文 层数:12, 头数:12, 隐藏层:768

你可以从huggingface的模型中心找到所有支持的模型:huggingface.co/nghuyong,并从paddle的官方仓库中查看模型详细信息:PaddleNLPERNIE

资源

ErnieConfig

transformers.ErnieConfig

< >

( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 task_type_vocab_size = 3 use_task_id = False initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int, 可选, 默认为 30522) — ERNIE 模型的词汇表大小。定义了调用 ErnieModelTFErnieModel 时传递的 inputs_ids 可以表示的不同标记的数量。
  • hidden_size (int, optional, 默认为 768) — 编码器层和池化层的维度。
  • num_hidden_layers (int, 可选, 默认为 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 12) — Transformer编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, 默认为 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (strCallable, 可选, 默认为 "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • attention_probs_dropout_prob (float, optional, defaults to 0.1) — 注意力概率的丢弃比例。
  • max_position_embeddings (int, optional, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • type_vocab_size (int, 可选, 默认为 2) — 调用 ErnieModelTFErnieModel 时传递的 token_type_ids 的词汇大小.
  • task_type_vocab_size (int, 可选, 默认为 3) — ERNIE2.0/ERNIE3.0 模型的 task_type_ids 的词汇表大小
  • use_task_id (bool, 可选, 默认为 False) — 模型是否支持 task_type_ids
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的epsilon值。
  • pad_token_id (int, 可选, 默认为 0) — 填充标记的ID.
  • position_embedding_type (str, 可选, 默认为 "absolute") — 位置嵌入的类型。选择 "absolute", "relative_key", "relative_key_query" 中的一个。对于 位置嵌入,使用 "absolute"。有关 "relative_key" 的更多信息,请参阅 Self-Attention with Relative Position Representations (Shaw et al.)。 有关 "relative_key_query" 的更多信息,请参阅 Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) 中的 方法 4.
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在 config.is_decoder=True 时相关。
  • classifier_dropout (float, optional) — 分类头的丢弃比率。

这是用于存储ErnieModelTFErnieModel配置的配置类。它用于根据指定的参数实例化一个ERNIE模型,定义模型架构。使用默认值实例化配置将产生类似于ERNIE nghuyong/ernie-3.0-base-zh架构的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import ErnieConfig, ErnieModel

>>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
>>> configuration = ErnieConfig()

>>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
>>> model = ErnieModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Ernie 特定输出

transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput

< >

( 损失: typing.Optional[torch.FloatTensor] = None 预测逻辑: FloatTensor = None 序列关系逻辑: FloatTensor = None 隐藏状态: typing.Optional[typing.Tuple[torch.FloatTensor]] = None 注意力: typing.Optional[typing.Tuple[torch.FloatTensor]] = None )

参数

  • loss (可选, 当提供 labels 时返回, torch.FloatTensor 形状为 (1,)) — 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。
  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax之前每个词汇标记的分数)。
  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(在SoftMax之前的真/假继续的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    注意力权重在注意力softmax之后,用于计算自注意力头中的加权平均值。

ErnieForPreTraining的输出类型。

ErnieModel

transformers.ErnieModel

< >

( config add_pooling_layer = True )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的Ernie模型转换器输出原始隐藏状态,顶部没有任何特定的头部。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

该模型可以表现为编码器(仅具有自注意力)以及解码器,在这种情况下,在自注意力层之间添加了一层交叉注意力,遵循了Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser和Illia Polosukhin在Attention is all you need中描述的架构。

要作为解码器使用,模型需要使用配置中的is_decoder参数初始化为True。要在Seq2Seq模型中使用,模型需要同时使用is_decoder参数和add_cross_attention参数初始化为True;然后在前向传递中需要输入encoder_hidden_states

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:
    • 1 表示 未掩码 的标记,
    • 0 表示 掩码 的标记。
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,取决于配置(ErnieConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • pooler_output (torch.FloatTensor 形状为 (batch_size, hidden_size)) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一句预测(分类)目标训练的。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=Trueconfig.add_cross_attention=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力softmax后,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 由 tuple(torch.FloatTensor) 组成的元组,长度为 config.n_layers,每个元组包含2个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True 则还包含2个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True 则在交叉注意力块中),可用于(参见 past_key_values 输入)加速顺序解码。

ErnieModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ErnieModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieModel.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

ErnieForPreTraining

transformers.ErnieForPreTraining

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie模型在预训练期间有两个头部:一个masked language modeling头部和一个next sentence prediction (classification)头部。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None next_sentence_label: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

    标签(形状为(batch_size, sequence_length)torch.LongTensor可选): 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]范围内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码), 损失仅针对标签在[0, ..., config.vocab_size]范围内的标记计算。 next_sentence_label(形状为(batch_size,)torch.LongTensor可选): 用于计算下一句预测(分类)损失的标签。输入应为序列对(参见input_ids文档字符串)。索引应在[0, 1]范围内:

    • 0 indicates sequence B is a continuation of sequence A,
    • 1 indicates sequence B is a random sequence. kwargs (Dict[str, any], optional, defaults to {}): Used to hide legacy arguments that have been deprecated.

返回

transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutputtuple(torch.FloatTensor)

一个 transformers.models.ernie.modeling_ernie.ErnieForPreTrainingOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(ErnieConfig)和输入。

  • loss (可选,当提供 labels 时返回,torch.FloatTensor 形状为 (1,)) — 总损失,作为掩码语言建模损失和下一序列预测 (分类)损失的总和。

  • prediction_logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • seq_relationship_logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一序列预测(分类)头的预测分数(SoftMax 之前真/假继续的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForPreTraining 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ErnieForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

ErnieForCausalLM

transformers.ErnieForCausalLM

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie 模型顶部带有 language modeling 头,用于 CLM 微调。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.Tensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor of shape (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个task_type_id,并且task_type_id的范围是`[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力机制的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在 [0, 1] 中选择:
    • 1 表示 未掩码 的标记,
    • 0 表示 掩码 的标记。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算从左到右语言建模损失(下一个词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的 标记将被忽略(掩码),损失仅计算标签在 [0, ..., config.vocab_size] 范围内的标记
  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    如果使用了past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentionstuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(ErnieConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失(用于下一个词的预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 由长度为 config.n_layerstorch.FloatTensor 元组组成的元组,每个元组包含自注意力和交叉注意力层的缓存键, 值状态,如果模型用于编码器-解码器设置。仅在 config.is_decoder = True 时相关。

    包含预计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)以加速顺序解码。

ErnieForCausalLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> import torch
>>> from transformers import AutoTokenizer, ErnieForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForCausalLM.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

ErnieForMaskedLM

transformers.ErnieForMaskedLM

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie 模型顶部带有language modeling头。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 范围内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码), 损失仅针对标签在 [0, ..., config.vocab_size] 范围内的标记进行计算

返回

transformers.modeling_outputs.MaskedLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或者一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种 元素,取决于配置(ErnieConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 掩码语言建模(MLM)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或者当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或者当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForMaskedLM 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ErnieForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForMaskedLM.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.88

ErnieForNextSentencePrediction

transformers.ErnieForNextSentencePrediction

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie 模型,顶部带有next sentence prediction (classification)头。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **kwargs ) transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对 (参见 input_ids 文档字符串)。索引应该在 [0, 1] 范围内:
    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。

返回

transformers.modeling_outputs.NextSentencePredictorOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,取决于配置(ErnieConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一个序列预测(分类)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(在 SoftMax 之前的 True/False 继续的分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForNextSentencePrediction 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

ErnieForSequenceClassification

transformers.ErnieForSequenceClassification

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie 模型转换器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于 GLUE 任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

ErnieForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

ErnieForMultipleChoice

transformers.ErnieForMultipleChoice

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie 模型,顶部带有多项选择分类头(在池化输出顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, num_choices, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 范围内,其中 num_choices 是输入张量第二维度的大小。(参见上面的 input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(ErnieConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor 形状为 (batch_size, num_choices)) — num_choices 是输入张量的第二维度。(见上面的 input_ids)。

    分类分数(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

ErnieForMultipleChoice 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, ErnieForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForMultipleChoice.from_pretrained("nghuyong/ernie-1.0-base-zh")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

ErnieForTokenClassification

transformers.ErnieForTokenClassification

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie 模型顶部带有标记分类头(隐藏状态输出顶部的线性层),例如用于命名实体识别(NER)任务。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个ModelOutput而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算标记分类损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。

ErnieForTokenClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

ErnieForQuestionAnswering

transformers.ErnieForQuestionAnswering

< >

( config )

参数

  • config (ErnieConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

Ernie 模型顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD(在隐藏状态输出顶部使用线性层来计算 span start logitsspan end logits)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None task_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • task_type_ids (torch.LongTensor 形状为 (batch_size, sequence_length), 可选) — 任务类型嵌入是一种特殊的嵌入,用于表示不同任务的特征,例如 词感知预训练任务、结构感知预训练任务和语义感知预训练任务。我们 为每个任务分配一个 task_type_id,并且 task_type_id 的范围是 `[0, config.task_type_vocab_size-1]
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会被考虑用于计算损失。
  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length)。序列之外的位置不会用于计算损失。

ErnieForQuestionAnswering 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

< > Update on GitHub