Transformers 文档

控制键

CTRL

Models Spaces

概述

CTRL模型由Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong和Richard Socher在CTRL: A Conditional Transformer Language Model for Controllable Generation中提出。它是一个因果(单向)变压器,通过在约140GB的文本数据上进行语言建模预训练,其中第一个标记保留为控制代码(如链接、书籍、维基百科等)。

论文的摘要如下:

大规模语言模型展示了有前景的文本生成能力,但用户无法轻松控制生成文本的特定方面。我们发布了CTRL,一个拥有16.3亿参数的条件变换器语言模型,训练用于根据控制代码进行条件生成,这些代码控制风格、内容和任务特定行为。控制代码来源于与原始文本自然共现的结构,保留了无监督学习的优势,同时提供了对文本生成更明确的控制。这些代码还允许CTRL预测给定序列时训练数据的哪些部分最有可能出现。这为通过基于模型的来源归因分析大量数据提供了一种潜在方法。

该模型由keskarnitishr贡献。原始代码可以在这里找到。

使用提示

  • CTRL 利用控制代码生成文本:它要求生成以某些单词、句子或链接开始,以生成连贯的文本。有关更多信息,请参阅原始实现
  • CTRL 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
  • CTRL 使用因果语言建模(CLM)目标进行训练,因此在预测序列中的下一个标记方面非常强大。利用这一特性,CTRL 可以生成语法连贯的文本,正如在 run_generation.py 示例脚本中所观察到的那样。
  • PyTorch 模型可以将 past_key_values 作为输入,这是之前计算的键/值注意力对。 TensorFlow 模型接受 past 作为输入。使用 past_key_values 值可以防止模型在文本生成上下文中重新计算 预先计算的值。有关此参数用法的更多信息,请参见 forward 方法。

资源

CTRLConfig

transformers.CTRLConfig

< >

( vocab_size = 246534 n_positions = 256 n_embd = 1280 dff = 8192 n_layer = 48 n_head = 16 resid_pdrop = 0.1 embd_pdrop = 0.1 layer_norm_epsilon = 1e-06 initializer_range = 0.02 use_cache = True **kwargs )

参数

  • vocab_size (int, 可选, 默认为 246534) — CTRL 模型的词汇表大小。定义了可以通过调用 CTRLModelTFCTRLModel 时传递的 inputs_ids 表示的不同标记的数量。
  • n_positions (int, optional, 默认为 256) — 该模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • n_embd (int, optional, 默认为 1280) — 嵌入和隐藏状态的维度。
  • dff (int, 可选, 默认为 8192) — 前馈网络(FFN)内部维度的维度大小。
  • n_layer (int, optional, 默认为 48) — Transformer 编码器中的隐藏层数。
  • n_head (int, optional, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。
  • resid_pdrop (float, optional, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。
  • embd_pdrop (int, optional, defaults to 0.1) — 嵌入的dropout比例.
  • layer_norm_epsilon (float, optional, defaults to 1e-06) — 用于层归一化层的epsilon值
  • initializer_range (float, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。

这是用于存储CTRLModelTFCTRLModel配置的配置类。它用于根据指定的参数实例化CTRL模型,定义模型架构。使用默认值实例化配置将产生类似于SalesForce的Salesforce/ctrl架构的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import CTRLConfig, CTRLModel

>>> # Initializing a CTRL configuration
>>> configuration = CTRLConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = CTRLModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

CTRLTokenizer

transformers.CTRLTokenizer

< >

( vocab_file merges_file unk_token = '' **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。
  • merges_file (str) — 合并文件的路径。
  • unk_token (str, 可选, 默认为 "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。

构建一个CTRL分词器。基于字节对编码。

此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

保存词汇表

< >

( 保存目录: str 文件名前缀: typing.Optional[str] = None )

Pytorch
Hide Pytorch content

CTRLModel

transformers.CTRLModel

< >

( config )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的CTRL模型变压器输出原始隐藏状态,没有任何特定的头部。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    如果使用了past_key_values,则只应将未计算其过去的输入ID作为input_ids传递。

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • past_key_values (Tuple[Tuple[torch.FloatTensor]] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的 past_key_values 输出)。可用于加速顺序解码。已经将其过去状态提供给此模型的 input_ids 不应作为输入 ID 传递,因为它们已经被计算过了。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPast 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(CTRLConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量,并且如果 config.is_encoder_decoder=True 则还包含 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,并且如果 config.is_encoder_decoder=True 则在交叉注意力块中),这些隐藏状态可以用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型每层输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

CTRLModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, CTRLModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLModel.from_pretrained("Salesforce/ctrl")

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 5, 1280]

CTRLLMHeadModel

transformers.CTRLLMHeadModel

< >

( config )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

CTRL 模型转换器,顶部带有语言建模头(线性层,其权重与输入嵌入绑定)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    如果使用了past_key_values,则只应将未计算其过去的输入ID作为input_ids传递。

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • past_key_values (Tuple[Tuple[torch.FloatTensor]] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的 past_key_values 输出)。可用于加速顺序解码。已经将其过去状态提供给此模型的 input_ids 不应作为输入 ID 传递,因为它们已经被计算过了。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于语言建模的标签。请注意,标签在模型内部被移位,即你可以设置 labels = input_ids 索引在 [-100, 0, ..., config.vocab_size] 中选择。所有设置为 -100 的标签 将被忽略(掩码),损失仅针对 [0, ..., config.vocab_size] 中的标签计算

返回

transformers.modeling_outputs.CausalLMOutputWithPasttuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(CTRLConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,), 可选, 当提供 labels 时返回) — 语言建模损失(用于下一个标记的预测)。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — torch.FloatTensor 的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — torch.FloatTensor 的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

CTRLLMHeadModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> import torch
>>> from transformers import AutoTokenizer, CTRLLMHeadModel

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl")

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Wikipedia The llama is", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> sequence_ids = model.generate(inputs["input_ids"])
>>> sequences = tokenizer.batch_decode(sequence_ids)
>>> sequences
['Wikipedia The llama is a member of the family Bovidae. It is native to the Andes of Peru,']

>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> round(outputs.loss.item(), 2)
9.21

>>> list(outputs.logits.shape)
[1, 5, 246534]

CTRLForSequenceClassification

transformers.CTRLForSequenceClassification

< >

( config )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

CTRL模型转换器,顶部带有序列分类头(线性层)。 CTRLForSequenceClassification 使用最后一个标记进行分类,与其他因果模型(例如GPT-2)相同。由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义pad_token_id,它只需取批次中每一行的最后一个值。由于在传递inputs_embeds而不是input_ids时无法猜测填充标记,因此它会执行相同的操作(取批次中每一行的最后一个值)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    如果使用了past_key_values,则只应将未计算其过去的输入ID作为input_ids传递。

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • past_key_values (Tuple[Tuple[torch.FloatTensor]] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(参见下面的 past_key_values 输出)。可用于加速顺序解码。已经将其过去状态提供给此模型的 input_ids 不应再作为输入 ID 传递,因为它们已经被计算过了。
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算序列分类/回归损失的标签。索引应在 [0, ..., config.num_labels - 1] 范围内。如果 config.num_labels == 1,则计算回归损失(均方损失),如果 config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或者一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或者当 config.return_dict=False 时),包含各种 元素,取决于配置(CTRLConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 分类(或者回归,如果 config.num_labels==1)损失。

  • logits (torch.FloatTensor 形状为 (batch_size, config.num_labels)) — 分类(或者回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或者当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或者当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每一层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

CTRLForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl")

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
>>> import torch

>>> torch.manual_seed(42)
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)

>>> labels = torch.tensor(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.93

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, CTRLForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = CTRLForSequenceClassification.from_pretrained(
...     "Salesforce/ctrl", problem_type="multi_label_classification"
... )

>>> # CTRL was trained with control codes as the first token
>>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt")
>>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values()

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)

>>> num_labels = len(model.config.id2label)
>>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to(
...     torch.float
... )
>>> loss = model(**inputs, labels=labels).loss
>>> loss.backward()
TensorFlow
Hide TensorFlow content

TFCTRLModel

transformers.TFCTRLModel

< >

( config *inputs **kwargs )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的CTRL模型变压器输出原始隐藏状态,没有任何特定的头部。

该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。

TensorFlow 模型和层在 transformers 中接受两种格式作为输入:

  • 将所有输入作为关键字参数(如PyTorch模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,事情应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:

  • 仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序: model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!

调用

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFBaseModelOutputWithPasttuple(tf.Tensor)

参数

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states).

    输入序列标记在词汇表中的索引。

    如果使用了past,则只有那些尚未计算其过去的输入ID应作为input_ids传递。

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • 过去 (List[tf.Tensor] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的 past 输出)。可用于加速顺序解码。已经计算过的 token ids 不应作为输入 ids 传递,因为它们已经被计算过了。
  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (tf.TensorNumpy array 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast 键值状态将被返回,并可用于加速解码(参见 past)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True.
  • 训练 (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估时具有不同的行为)。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPasttuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPast 或一个由 tf.Tensor 组成的元组(如果 return_dict=False 被传递或当 config.return_dict=False 时),包含根据配置(CTRLConfig)和输入而定的各种元素。

  • last_hidden_state (tf.Tensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (List[tf.Tensor], 可选, 当 use_cache=True 被传递或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预计算的隐藏状态(注意力块中的键和值),可用于(见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当 output_hidden_states=True 被传递或当 config.output_hidden_states=True 时返回) — 由 tf.Tensor 组成的元组(一个用于嵌入层的输出,一个用于每一层的输出),形状为 (batch_size, sequence_length, hidden_size)

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当 output_attentions=True 被传递或当 config.output_attentions=True 时返回) — 由 tf.Tensor 组成的元组(每一层一个),形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

TFCTRLModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFCTRLModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = TFCTRLModel.from_pretrained("Salesforce/ctrl")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFCTRLLMHeadModel

transformers.TFCTRLLMHeadModel

< >

( config *inputs **kwargs )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

CTRL 模型转换器,顶部带有语言建模头(线性层,其权重与输入嵌入绑定)。

该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。

TensorFlow 模型和层在 transformers 中接受两种格式作为输入:

  • 将所有输入作为关键字参数(如PyTorch模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,事情应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:

  • 仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序: model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!

调用

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFCausalLMOutputWithPasttuple(tf.Tensor)

参数

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states).

    输入序列标记在词汇表中的索引。

    如果使用了past,则只有那些尚未计算其过去的输入ID应作为input_ids传递。

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • 过去 (List[tf.Tensor] 长度为 config.n_layers) — 包含模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的 past 输出)。可用于加速顺序解码。已经计算过的令牌ID不应作为输入ID传递,因为它们已经被计算过了。
  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (tf.TensorNumpy array,形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 Truepast 键值状态将被返回,并可用于加速解码(参见 past)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions。此参数只能在eager模式下使用,在graph模式下将使用配置中的值代替。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数只能在eager模式下使用,在graph模式下将使用配置中的值代替。
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True。
  • 训练 (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估之间有不同的行为)。
  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — 用于计算交叉熵分类损失的标签。索引应在 [0, ..., config.vocab_size - 1] 范围内。

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithPasttuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或一个 tf.Tensor 元组(如果 return_dict=False 被传递或当 config.return_dict=False 时),包含根据配置(CTRLConfig)和输入的各种元素。

  • loss (tf.Tensor 形状为 (n,), 可选, 其中 n 是非掩码标签的数量,当提供 labels 时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (tf.Tensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (List[tf.Tensor], 可选, 当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head))。

    包含预计算的隐藏状态(注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFCTRLLMHeadModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFCTRLLMHeadModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = TFCTRLLMHeadModel.from_pretrained("Salesforce/ctrl")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFCTRLForSequenceClassification

transformers.TFCTRLForSequenceClassification

< >

( config *inputs **kwargs )

参数

  • config (CTRLConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

CTRL模型转换器,顶部带有序列分类头(线性层)。

TFCTRLForSequenceClassification 使用最后一个标记来进行分类,就像其他因果模型(例如 GPT-1, GPT-2)所做的那样。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id,它会在每一行中找到不是填充标记的最后一个标记。如果没有定义pad_token_id,它只需取批次中每一行的最后一个值。由于在传递inputs_embeds而不是input_ids时无法猜测填充标记,它会执行相同的操作(取批次中每一行的最后一个值)。

该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。

TensorFlow 模型和层在 transformers 中接受两种格式作为输入:

  • 将所有输入作为关键字参数(如PyTorch模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit() 这样的方法时,事情应该“正常工作”——只需以 model.fit() 支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:

  • 仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序: model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!

调用

< >

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

参数

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states).

    输入序列标记在词汇表中的索引。

    如果使用了past,则只有那些尚未计算其过去的输入ID应作为input_ids传递。

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()PreTrainedTokenizer.encode()

    什么是输入ID?

  • 过去 (List[tf.Tensor] 长度为 config.n_layers) — 包含模型计算出的预计算隐藏状态(注意力块中的键和值)(见下面的 past 输出)。可用于加速顺序解码。已经计算过的 token ids 不应作为输入 ids 传递,因为它们已经被计算过了。
  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
    • 0 corresponds to a sentence A token,
    • 1 corresponds to a sentence B token.

    什么是token type IDs?

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • head_mask (torch.FloatTensor 形状为 (num_heads,)(num_layers, num_heads), 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • inputs_embeds (tf.TensorNumpy array 形状为 (batch_size, sequence_length, hidden_size), 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • use_cache (bool, 可选) — 如果设置为 True,将返回 past 键值状态,并可用于加速解码(参见 past)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True.
  • 训练 (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估时有不同的行为)。
  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — 用于计算交叉熵分类损失的标签。索引应在 [0, ..., config.vocab_size - 1] 范围内。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutputtuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor 元组(如果 return_dict=False 被传递或当 config.return_dict=False 时)包含根据配置 (CTRLConfig) 和输入的各种元素。

  • loss (tf.Tensor 形状为 (batch_size, ), 可选, 当提供 labels 时返回) — 分类(或回归,如果 config.num_labels==1)损失。

  • logits (tf.Tensor 形状为 (batch_size, config.num_labels)) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    模型在每层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — tf.Tensor 元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFCTRLForSequenceClassification 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFCTRLForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl")
>>> model = TFCTRLForSequenceClassification.from_pretrained("Salesforce/ctrl")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFCTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
< > Update on GitHub