OLMoE
概述
OLMoE模型由Niklas Muennighoff、Luca Soldaini、Dirk Groeneveld、Kyle Lo、Jacob Morrison、Sewon Min、Weijia Shi、Pete Walsh、Oyvind Tafjord、Nathan Lambert、Yuling Gu、Shane Arora、Akshita Bhagia、Dustin Schwenk、David Wadden、Alexander Wettig、Binyuan Hui、Tim Dettmers、Douwe Kiela、Ali Farhadi、Noah A. Smith、Pang Wei Koh、Amanpreet Singh、Hannaneh Hajishirzi在OLMoE: Open Mixture-of-Experts Language Models中提出。
OLMoE 是一系列使用稀疏专家混合设计的开放语言模型,旨在推动语言模型科学的发展。我们发布了训练这些模型所涉及的所有代码、检查点、日志和详细信息。
论文的摘要如下:
我们介绍了OLMoE,一个完全开放、最先进的语言模型,利用稀疏专家混合(MoE)。OLMoE-1B-7B拥有70亿(B)参数,但每个输入标记仅使用1B。我们在5万亿标记上进行了预训练,并进一步适应以创建OLMoE-1B-7B-Instruct。我们的模型在具有相似活动参数的可用模型中表现优异,甚至超过了更大的模型,如Llama2-13B-Chat和DeepSeekMoE-16B。我们展示了关于MoE训练的各种实验,分析了我们模型中的路由,显示出高度专业化,并开源了我们工作的所有方面:模型权重、训练数据、代码和日志。
该模型由Muennighoff贡献。 原始代码可以在这里找到。
OlmoeConfig
类 transformers.OlmoeConfig
< source >( 词汇大小 = 50304 隐藏大小 = 2048 中间大小 = 2048 隐藏层数 = 16 注意力头数 = 16 键值头数 = 无 隐藏激活函数 = 'silu' 最大位置嵌入 = 4096 初始化范围 = 0.02 RMS归一化epsilon = 1e-05 使用缓存 = 真 填充标记ID = 1 开始标记ID = 无 结束标记ID = 50279 绑定词嵌入 = 假 rope_theta = 10000.0 rope_scaling = 无 注意力偏置 = 假 注意力丢弃率 = 0.0 clip_qkv = 无 每个标记的专家数 = 8 专家总数 = 64 输出路由器logits = 假 路由器辅助损失系数 = 0.01 归一化topk概率 = 假 **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 50304) — OLMoE 模型的词汇表大小。定义了可以通过调用 OlmoeModel 时传递的inputs_ids
表示的不同标记的数量 - hidden_size (
int
, optional, 默认为 2048) — 隐藏表示的维度。 - intermediate_size (
int
, optional, 默认为 2048) — MLP 表示的维度。 - num_hidden_layers (
int
, 可选, 默认为 16) — Transformer 解码器中的隐藏层数。 - num_attention_heads (
int
, optional, defaults to 16) — Transformer解码器中每个注意力层的注意力头数。 - num_key_value_heads (
int
, 可选) — 这是用于实现分组查询注意力(Grouped Query Attention)的键值头数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力(MHA),如果num_key_value_heads=1
,模型将使用多查询注意力(MQA),否则将使用GQA。当 将多头检查点转换为GQA检查点时,每个组的键和值头应通过平均池化该组中的所有原始头来构建。 更多详情请查看这篇论文。如果未指定,将默认为num_attention_heads
. - hidden_act (
str
或function
, 可选, 默认为"silu"
) — 解码器中的非线性激活函数(函数或字符串)。 - max_position_embeddings (
int
, optional, 默认为 4096) — 此模型可能使用的最大序列长度。 - initializer_range (
float
, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - rms_norm_eps (
float
, optional, defaults to 1e-05) — rms归一化层使用的epsilon值。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True
时相关。 - pad_token_id (
int
, optional, 默认为 1) — 填充标记的ID. - bos_token_id (
int
, optional) — 流的开始标记id. - eos_token_id (
int
, optional, 默认为 50279) — 流结束标记的ID. - tie_word_embeddings (
bool
, optional, defaults toFalse
) — 是否绑定权重嵌入 - rope_theta (
float
, optional, 默认为 10000.0) — RoPE 嵌入的基础周期。 - rope_scaling (
Dict
, optional) — Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is{"type": strategy name, "factor": scaling factor}
. When using this flag, don’t updatemax_position_embeddings
to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. - attention_bias (
bool
, 默认为False
, 可选, 默认为False
) — 是否在自注意力机制中的查询、键、值和输出投影层中使用偏置。 - attention_dropout (
float
, optional, 默认为 0.0) — 注意力概率的丢弃比例。 - clip_qkv (
float
, 可选) — 如果非None
,查询、键和值注意力状态的元素将被裁剪,以确保它们的绝对值不超过此值。 - num_experts_per_tok (
int
, optional, 默认为 8) — 选择的专家数量. - num_experts (
int
, optional, 默认为 64) — 路由专家的数量。 - output_router_logits (
bool
, 可选, 默认为False
) — 是否应由模型返回路由器logits。启用此选项还将允许模型输出辅助损失,包括负载平衡损失和路由器z损失。 - router_aux_loss_coef (
float
, optional, defaults to 0.01) — 总损失的辅助损失因子。 - norm_topk_prob (
bool
, optional, defaults toFalse
) — 是否对topk概率进行归一化。
这是用于存储OlmoeModel配置的配置类。它用于根据指定的参数实例化一个OLMoE模型,定义模型架构。使用默认值实例化配置将产生类似于allenai/OLMoE-1B-7B-0924的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
>>> from transformers import OlmoeModel, OlmoeConfig
>>> # Initializing a OLMoE 7B A1B style configuration
>>> configuration = OlmoeConfig()
>>> # Initializing a model from the OLMoE 7B A1B style configuration
>>> model = OlmoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
OlmoeModel
类 transformers.OlmoeModel
< source >( config: OlmoeConfig )
参数
- config (OlmoeConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
- config — OlmoeConfig
裸的Olmoe模型输出原始的隐藏状态,没有任何特定的头部。 该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
Transformer解码器由config.num_hidden_layers层组成。每一层都是一个OlmoeDecoderLayer
前进
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,可以选择只输入最后的input_ids
(参见past_key_values
)。如果你想改变填充行为,你应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. - past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.允许两种格式:
- a Cache instance;
- Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,将返回旧的缓存格式。如果使用了
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后input_ids
(那些没有将其过去键值状态提供给此模型的input_ids
),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - output_router_logits (
bool
, optional) — 是否返回所有路由器的logits。它们对于计算路由器损失非常有用,并且在推理期间不应返回。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 表示输入序列标记在序列中的位置的索引。与position_ids
相反, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。
OlmoeModel 的 forward 方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
OlmoeForCausalLM
前进
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None num_logits_to_keep: int = 0 **loss_kwargs ) → transformers.modeling_outputs.MoeCausalLMOutputWithPast
或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
如果使用了
past_key_values
,可以选择只输入最后的input_ids
(参见past_key_values
)。如果你想改变填充行为,你应该阅读
modeling_opt._prepare_decoder_attention_mask
并根据你的需求进行修改。有关默认策略的更多信息,请参见论文中的图1。- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. - past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.允许两种格式:
- a Cache instance;
- Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,将返回旧的缓存格式。如果使用了
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后input_ids
(那些没有将其过去键值状态提供给此模型的input_ids
),而不是形状为(batch_size, sequence_length)
的所有input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - use_cache (
bool
, 可选) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - output_router_logits (
bool
, 可选) — 是否返回所有路由器的logits。它们对于计算路由器损失非常有用,并且 在推理期间不应返回。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — 表示输入序列标记在序列中的位置的索引。与position_ids
不同, 这个张量不受填充的影响。它用于在正确的位置更新缓存并推断 完整的序列长度。 - Args —
labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]
or -100 (seeinput_ids
docstring). Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
.num_logits_to_keep (
int
, 可选): 计算最后num_logits_to_keep
个token的logits。如果为0
,则计算所有input_ids
的logits(特殊情况)。生成时只需要最后一个token的logits,仅计算该token的logits可以节省内存,这对于长序列或大词汇量来说非常重要。
返回
transformers.modeling_outputs.MoeCausalLMOutputWithPast
或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MoeCausalLMOutputWithPast
或一个由 torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种元素,具体取决于配置(OlmoeConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个词的预测)。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
aux_loss (
torch.FloatTensor
,可选,当提供labels
时返回) — 稀疏模块的辅助损失。 -
router_logits (
tuple(torch.FloatTensor)
,可选,当传递output_router_probs=True
和config.add_router_probs=True
或当config.output_router_probs=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个),形状为(batch_size, sequence_length, num_experts)
。由 MoE 路由器计算的原始路由器 logits(softmax 后),这些项用于计算专家混合模型的辅助损失。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 由tuple(torch.FloatTensor)
组成的元组,长度为config.n_layers
,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。包含预计算的隐藏状态(自注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
OlmoeForCausalLM 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, OlmoeForCausalLM
>>> model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'