MEGA
该模型目前处于维护模式,我们不接受任何更改其代码的新PR。
如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.40.2。
您可以通过运行以下命令来执行此操作:pip install -U transformers==4.40.2
。
概述
MEGA模型由Xuezhe Ma、Chunting Zhou、Xiang Kong、Junxian He、Liangke Gui、Graham Neubig、Jonathan May和Luke Zettlemoyer在Mega: Moving Average Equipped Gated Attention中提出。 MEGA提出了一种新的自注意力方法,每个编码器层除了标准的点积注意力头外,还配备了一个多头指数移动平均,这使得注意力机制具有更强的位置偏差。这使得MEGA在包括LRA在内的标准基准测试中能够与Transformers竞争,同时参数数量显著减少。MEGA的计算效率使其能够扩展到非常长的序列,使其成为长文档NLP任务的一个有吸引力的选择。
论文的摘要如下:
Transformer注意力机制中的设计选择,包括弱归纳偏差和二次计算复杂度,限制了其在长序列建模中的应用。在本文中,我们介绍了Mega,这是一种简单、理论上有依据的单头门控注意力机制,配备了(指数)移动平均,以将位置感知的局部依赖性的归纳偏差纳入位置无关的注意力机制中。我们进一步提出了一种Mega的变体,通过有效地将整个序列分割成固定长度的多个块,提供了线性的时间和空间复杂度,同时仅产生最小的质量损失。在广泛的序列建模基准测试中,包括长距离竞技场、神经机器翻译、自回归语言建模以及图像和语音分类,Mega在包括Transformer变体和最近的状态空间模型在内的其他序列模型中取得了显著的改进。
使用提示
- MEGA 可以在相对较少的参数下表现良好。有关在各种设置中表现良好的架构规格示例,请参阅 MEGA 论文中的附录 D。如果使用 MEGA 作为解码器,请确保设置
bidirectional=False
以避免默认双向的错误。 - Mega-chunk 是 mega 的一种变体,它将时间和空间复杂度从二次降低到线性。使用 MegaConfig.use_chunking 进行分块,并通过 MegaConfig.chunk_size 控制分块大小。
实现说明
- MEGA的原始实现在softmax注意力和Laplace/平方ReLU方法之间对填充和因果自注意力的注意掩码有不一致的期望。此实现解决了这种不一致性。
- 原始实现不包括令牌类型嵌入;此实现增加了对这些的支持,选项由MegaConfig.add_token_type_embeddings控制
MegaConfig
类 transformers.MegaConfig
< source >( vocab_size = 30522 hidden_size = 128 num_hidden_layers = 4 intermediate_size = 256 ema_projection_size = 16 bidirectional = True shared_representation_size = 64 use_chunking = False chunk_size = -1 truncation = None normalize_before_mega = True normalization_type = 'scalenorm' norm_affine = True activation = 'silu' attention_activation = 'softmax' dropout_prob = 0.1 hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 use_feature_dropout = False use_normalized_ffn = True nffn_hidden_size = 256 normalize_before_ffn = True nffn_activation_dropout_prob = 0.1 max_positions = 2048 add_token_type_embeddings = False type_vocab_size = 2 initializer_range = 0.02 ema_delta_alpha_range = 0.2 ema_beta_range = 0.02 ema_gamma_omega_range = 1.0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 relative_positional_bias = 'rotary' classifier_dropout = None use_cache = True add_lm_hidden_dense_layer = True **kwargs )
参数
- vocab_size (
int
, 可选, 默认为 30522) — Mega 模型的词汇表大小。定义了调用 MegaModel 时传递的inputs_ids
可以表示的不同标记的数量。 - hidden_size (
int
, optional, 默认为 128) — 编码器层和池化层的维度。 - num_hidden_layers (
int
, optional, 默认为 4) — Mega 编码器中的隐藏层数。 - intermediate_size (
int
, 可选, 默认为 256) — Mega 编码器中隐藏层大小(自注意力值投影)的维度 - ema_projection_size (
int
, 可选, 默认为 16) — MegaMultiDimensionDampedEma 的维度 - 双向 (
bool
, 可选, 默认为True
) — Mega自注意力中使用的MegaMultiDimensionDampedEma是否应该双向工作 (True
) 或单向工作 (False
)。双向EMA与因果解码不兼容,因此如果您打算将模型用作解码器,则应将其设置为False。 - shared_representation_size (
int
, optional, 默认为 64) — 自注意力查询和键共享表示的线性投影的维度 - use_chunking (
bool
, 可选, 默认为False
) — 是否对输入进行分块以实现线性自注意力复杂度(在论文中描述为Mega-chunk) - chunk_size (
int
, 可选, 默认为 -1) — 如果use_chunking
设置为True
,则确定应用于输入序列的块大小。如果 使用了分块,输入序列必须填充为chunk_size
的倍数 - 截断 (
int
, 可选) — 如果指定,则为MegaMultiDimensionDampedEma截断的序列长度 - normalize_before_mega (
bool
, 可选, 默认为True
) — 是否在通过Mega编码器块之前 (True
) 或之后 (False
) 进行归一化 - normalization_type (
str
, 可选, 默认为"scalenorm"
) — 在Mega编码器块中使用的归一化类型。选择"scalenorm"
,"layernorm"
,"rmsnorm"
,"batchnorm"
, 或"syncbatchnorm"
(syncbatchnorm需要GPU) - norm_affine (
bool
, 可选, 默认为True
) — 如果为True
,在归一化过程中对输入应用参数化的仿射变换 - activation (
str
, 可选, 默认为"silu"
) — 在Mega编码器块中应用的激活函数。选择其中之一"silu"
,"relu"
,"linear"
,"gelu"
, 或"gelu_accurate"
- attention_activation (
str
, 可选, 默认为"softmax"
) — 应用于单头自注意力(如Transformer)的激活函数。选择其中之一"softmax"
,"laplace"
, 或"relu2"
- dropout_prob (
float
, optional, defaults to 0.1) — EMA自注意力的dropout概率 - hidden_dropout_prob (
float
, 可选, 默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 - attention_probs_dropout_prob (
float
, optional, 默认为 0.1) — 注意力概率的丢弃比例。 - use_feature_dropout (
bool
, 可选, 默认为False
) — 是否使用基于特征的 (True
) 或标准 dropout (False
) - use_normalized_ffn (
bool
, 可选, 默认为True
) — 是否在Mega块中使用归一化的前馈子层 (True
) 或直接传递Mega编码器输出 (False
) - nffn_hidden_size (
int
, 可选, 默认为 256) — 如果在 Mega 中使用归一化前馈网络 (NFFN) 层 (use_normalized_ffn = True
),这是 NFFN 的隐藏大小 - normalize_before_ffn (
bool
, 可选, 默认为True
) — 是否在NFFN的前馈部分之前 (True
) 或之后 (False
) 进行归一化 - nffn_activation_dropout_prob (
float
, optional, 默认为 0.1) — NFFN 组件的 dropout 比例. - max_positions (
int
, 可选, 默认为 2048) — 用于位置表示的最大序列长度。对于"simple"
相对位置偏差, 这是输入长度的硬限制;"rotary"
相对位置偏差将外推到更长的序列 - add_token_type_embeddings (
bool
, 可选, 默认为True
) — 是否在嵌入中考虑令牌类型。保留为可选以保持与原始实现的兼容性,同时增加对令牌类型的支持。 - type_vocab_size (
int
, 可选, 默认为 2) — 调用 MegaModel 时传递的token_type_ids
的词汇表大小。仅在add_token_type_embeddings = True
时使用 - initializer_range (
float
, 可选, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - ema_delta_alpha_range (
float
, 可选, 默认为 0.2) — 用于初始化MegaMultiDimensionDampedEma中的delta(阻尼因子)和alpha(衰减因子)参数的标准差。 - ema_beta_range (
float
, 可选, 默认值为 0.02) — 在 MegaMultiDimensionDampedEma 中初始化 beta 参数(扩展矩阵)的标准差。 - ema_gamma_omega_range (
float
, optional, defaults to 1.0) — 用于初始化MultiDimensionEMA中的gamma(投影矩阵)和omega(残差权重)参数的标准差。 - relative_positional_bias (
str
, 可选, 默认为"rotary"
) — 相对位置编码的类型。选择"rotary"
或"simple"
之一。如果选择"simple"
,max_positions
用作输入大小的限制,而"rotary"
则会在max_positions
之外进行外推。 - is_decoder (
bool
, optional, 默认为False
) — 模型是否用作解码器。如果为False
,则模型用作编码器。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True
时相关。 - classifier_dropout (
float
, optional) — 分类头的丢弃比率。 - add_lm_hidden_dense_layer (
bool
, 可选, 默认为True
) — 是否在编码器输出和语言模型头之间包含一个隐藏层进行投影 (True
) 或者直接将隐藏状态传递给语言模型头 (False
)。为了与原始实现兼容,此选项仍然可选
这是用于存储MegaModel配置的配置类。它用于根据指定的参数实例化一个Mega模型,定义模型架构。使用默认值实例化配置将产生类似于mnaylor/mega-base-wikitext架构的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import MegaConfig, MegaModel
>>> # Initializing a Mega configuration
>>> configuration = MegaConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MegaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
MegaModel
类 transformers.MegaModel
< source >( config: MegaConfig add_pooling_layer = True )
参数
- config (MegaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸MEGA模型变压器输出原始隐藏状态,顶部没有任何特定的头部。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
该模型可以作为编码器(仅具有自注意力)以及解码器,在这种情况下,在自注意力之后添加了一层交叉注意力,遵循了Xuezhe Ma、Chunting Zhou、Xiang Kong、Junxian He、Liangke Gui、Graham Neubig、Jonathan May和Luke Zettlemoyer在Mega: Moving Average Equipped Gated Attention_中描述的架构。
要使模型表现为解码器,需要使用配置中的is_decoder
参数初始化为True
,并将bidirectional
设置为False
。要在Seq2Seq模型中使用,模型需要使用is_decoder=True
和bidirectional=False
参数进行初始化,同时将add_cross_attention
设置为True
;然后,encoder_hidden_states
将作为前向传递的输入。
.. _Mega: 移动平均配备的门控注意力: https://arxiv.org/abs/2209.10655
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
add_token_type_embeddings
parameter set toTrue
. All the value in this tensor should be always < config.type_vocab_size.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.如果使用了
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - use_cache (
bool
, 可选) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(MegaConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
pooler_output (
torch.FloatTensor
形状为(batch_size, hidden_size)
) — 序列的第一个标记(分类标记)在经过用于辅助预训练任务的层进一步处理后的最后一层隐藏状态。例如,对于BERT系列模型,这返回经过线性层和tanh激活函数处理后的分类标记。线性层的权重是在预训练期间通过下一句预测(分类)目标进行训练的。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力softmax后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
和config.add_cross_attention=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力softmax后,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递了use_cache=True
或当config.use_cache=True
时返回) — 由tuple(torch.FloatTensor)
组成的元组,长度为config.n_layers
,每个元组包含2个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且如果config.is_encoder_decoder=True
则还包含2个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预计算的隐藏状态(自注意力块中的键和值,并且如果
config.is_encoder_decoder=True
则还包含交叉注意力块中的键和值),可用于(参见past_key_values
输入)加速顺序解码。
MegaModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegaModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> model = MegaModel.from_pretrained("mnaylor/mega-base-wikitext")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
MegaForCausalLM
类 transformers.MegaForCausalLM
< source >( config: MegaConfig )
参数
- config (MegaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
MEGA 模型顶部带有 language modeling
头,用于 CLM 微调。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None past_key_values: typing.Tuple[typing.Tuple[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
add_token_type_embeddings
parameter set toTrue
. All the value in this tensor should be always < config.type_vocab_size.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 编码器最后一层输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 - encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在编码器输入的填充标记索引上执行注意力操作的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值在[0, 1]
中选择:- 1 表示 未掩码 的标记,
- 0 表示 掩码 的标记。
- labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算从左到右语言建模损失(下一个词预测)的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的 标记将被忽略(掩码),损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记计算 - past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.如果使用了
past_key_values
,用户可以选择只输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去键值状态提供给此模型的),而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 - use_cache (
bool
, 可选) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(MegaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失(用于下一个词的预测)。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 由长度为config.n_layers
的torch.FloatTensor
元组组成的元组,每个元组包含自注意力和交叉注意力层的缓存键, 值状态,如果模型用于编码器-解码器设置。仅在config.is_decoder = True
时相关。包含预计算的隐藏状态(注意力块中的键和值),可用于(参见
past_key_values
输入)以加速顺序解码。
MegaForCausalLM 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegaForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> config = AutoConfig.from_pretrained("mnaylor/mega-base-wikitext")
>>> config.is_decoder = True
>>> config.bidirectional = False
>>> model = MegaForCausalLM.from_pretrained(
... "mnaylor/mega-base-wikitext", config=config, ignore_mismatched_sizes=True
... )
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
MegaForMaskedLM
类 transformers.MegaForMaskedLM
< source >( config: MegaConfig )
参数
- config (MegaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
MEGA 模型顶部带有language modeling
头。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None encoder_hidden_states: typing.Optional[torch.FloatTensor] = None encoder_attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
add_token_type_embeddings
parameter set toTrue
. All the value in this tensor should be always < config.type_vocab_size.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码), 损失仅针对标签在[0, ..., config.vocab_size]
范围内的标记进行计算 - kwargs (
Dict[str, any]
, 可选, 默认为 {}) — 用于隐藏已被弃用的旧参数.
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(MegaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 掩码语言建模(MLM)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegaForMaskedLM 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegaForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> model = MegaForMaskedLM.from_pretrained("mnaylor/mega-base-wikitext")
>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.1
MegaForSequenceClassification
类 transformers.MegaForSequenceClassification
< source >( config )
参数
- config (MegaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
MEGA 模型转换器,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于 GLUE 任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
add_token_type_embeddings
parameter set toTrue
. All the value in this tensor should be always < config.type_vocab_size.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(MegaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegaForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, MegaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> model = MegaForSequenceClassification.from_pretrained("mnaylor/mega-base-wikitext")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MegaForSequenceClassification.from_pretrained("mnaylor/mega-base-wikitext", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, MegaForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> model = MegaForSequenceClassification.from_pretrained("mnaylor/mega-base-wikitext", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MegaForSequenceClassification.from_pretrained(
... "mnaylor/mega-base-wikitext", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
MegaForMultipleChoice
类 transformers.MegaForMultipleChoice
< source >( config )
参数
- config (MegaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
MEGA 模型,顶部带有多项选择分类头(在池化输出之上的线性层和 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
add_token_type_embeddings
parameter set toTrue
. All the value in this tensor should be always < config.type_vocab_size.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(MegaConfig)和输入。
-
loss (
torch.FloatTensor
形状为 (1,),可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维度。(见上面的 input_ids)。分类分数(在 SoftMax 之前)。
-
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegaForMultipleChoice 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegaForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> model = MegaForMultipleChoice.from_pretrained("mnaylor/mega-base-wikitext")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
MegaForTokenClassification
类 transformers.MegaForTokenClassification
< source >( config )
参数
- config (MegaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
MEGA模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
add_token_type_embeddings
parameter set toTrue
. All the value in this tensor should be always < config.type_vocab_size.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(MegaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegaForTokenClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegaForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> model = MegaForTokenClassification.from_pretrained("mnaylor/mega-base-wikitext")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
MegaForQuestionAnswering
类 transformers.MegaForQuestionAnswering
< source >( config )
参数
- config (MegaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
MEGA 模型,顶部带有跨度分类头,用于抽取式问答任务,如 SQuAD(在隐藏状态输出之上的线性层用于计算 span start logits
和 span end logits
)。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0,1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
This parameter can only be used when the model is initialized with
add_token_type_embeddings
parameter set toTrue
. All the value in this tensor should be always < config.type_vocab_size.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会被考虑用于计算损失。 - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会用于计算损失。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(MegaConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度起始分数(在 SoftMax 之前)。 -
end_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度结束分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
MegaForQuestionAnswering 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, MegaForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> model = MegaForQuestionAnswering.from_pretrained("mnaylor/mega-base-wikitext")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss