FlauBERT
概述
FlauBERT模型是由Hang Le等人在论文FlauBERT: Unsupervised Language Model Pre-training for French中提出的。它是一个使用掩码语言建模(MLM)目标(如BERT)预训练的Transformer模型。
论文的摘要如下:
语言模型已成为在许多不同自然语言处理(NLP)任务中实现最先进结果的关键步骤。利用当今可用的大量未标记文本,它们提供了一种有效的方式来预训练连续词表示,这些表示可以针对下游任务进行微调,并在句子级别进行上下文化。这已经在英语中使用上下文化表示得到了广泛证明(Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b)。在本文中,我们介绍并分享了FlauBERT,这是一个在非常大且异质的法语语料库上学习的模型。使用新的CNRS(法国国家科学研究中心)Jean Zay超级计算机训练了不同大小的模型。我们将我们的法语语言模型应用于各种NLP任务(文本分类、释义、自然语言推理、解析、词义消歧),并显示大多数情况下它们优于其他预训练方法。不同版本的FlauBERT以及一个名为FLUE(法语理解评估)的下游任务统一评估协议被分享给研究社区,以便在法语NLP中进行进一步的可重复实验。
提示:
- 与RoBERTa类似,但没有句子顺序预测(因此仅在MLM目标上进行训练)。
资源
FlaubertConfig
类 transformers.FlaubertConfig
< source >( pre_norm = False layerdrop = 0.0 vocab_size = 30145 emb_dim = 2048 n_layers = 12 n_heads = 16 dropout = 0.1 attention_dropout = 0.1 gelu_activation = True sinusoidal_embeddings = False causal = False asm = False n_langs = 1 use_lang_emb = True max_position_embeddings = 512 embed_init_std = 0.02209708691207961 layer_norm_eps = 1e-12 init_std = 0.02 bos_index = 0 eos_index = 1 pad_index = 2 unk_index = 3 mask_index = 5 is_encoder = True summary_type = 'first' summary_use_proj = True summary_activation = None summary_proj_to_labels = True summary_first_dropout = 0.1 start_n_top = 5 end_n_top = 5 mask_token_id = 0 lang_id = 0 pad_token_id = 2 bos_token_id = 0 **kwargs )
参数
- pre_norm (
bool
, 可选, 默认为False
) — 是否在每层的注意力机制后的前馈层之前或之后应用层归一化(Vaswani 等人,Tensor2Tensor 用于神经机器翻译。2018) - layerdrop (
float
, optional, 默认为 0.0) — 在训练期间丢弃层的概率(Fan 等人,Reducing Transformer Depth on Demand with Structured Dropout. ICLR 2020) - vocab_size (
int
, 可选, 默认为 30145) — FlauBERT 模型的词汇表大小。定义了可以通过调用 FlaubertModel 或 TFFlaubertModel 时传递的inputs_ids
表示的不同标记的数量。 - emb_dim (
int
, optional, 默认为 2048) — 编码器层和池化层的维度。 - n_layer (
int
, optional, 默认为 12) — Transformer 编码器中的隐藏层数。 - n_head (
int
, optional, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。 - dropout (
float
, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的dropout概率。 - attention_dropout (
float
, optional, defaults to 0.1) — 注意力机制的丢弃概率 - gelu_activation (
bool
, optional, defaults toTrue
) — 是否使用gelu激活函数而不是relu. - sinusoidal_embeddings (
bool
, 可选, 默认为False
) — 是否使用正弦位置嵌入而不是绝对位置嵌入。 - 因果 (
bool
, 可选, 默认为False
) — 模型是否应以因果方式行为。因果模型使用三角注意力掩码,以便仅关注左侧上下文,而不是双向上下文。 - asm (
bool
, 可选, 默认为False
) — 是否使用自适应对数softmax投影层而不是线性层作为预测层。 - n_langs (
int
, optional, 默认为 1) — 模型处理的语言数量。对于单语模型,设置为 1。 - use_lang_emb (
bool
, 可选, 默认为True
) — 是否使用语言嵌入。一些模型使用额外的语言嵌入,有关如何使用它们的信息,请参阅多语言模型页面. - max_position_embeddings (
int
, optional, 默认为 512) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - embed_init_std (
float
, optional, 默认为 2048^-0.5) — 用于初始化嵌入矩阵的 truncated_normal_initializer 的标准差。 - init_std (
int
, optional, 默认为 50257) — 用于初始化除嵌入矩阵外的所有权重矩阵的 truncated_normal_initializer 的标准差。 - layer_norm_eps (
float
, optional, defaults to 1e-12) — 层归一化层使用的epsilon值。 - bos_index (
int
, optional, defaults to 0) — 词汇表中句子开始标记的索引。 - eos_index (
int
, optional, defaults to 1) — 词汇表中句子结束标记的索引。 - pad_index (
int
, optional, 默认为 2) — 词汇表中填充标记的索引。 - unk_index (
int
, optional, defaults to 3) — 词汇表中未知标记的索引。 - mask_index (
int
, optional, 默认为 5) — 词汇表中掩码标记的索引。 - is_encoder(
bool
, 可选, 默认为True
) — 初始化的模型是否应该是一个如Vaswani等人所见的变压器编码器或解码器 - summary_type (
string
, optional, defaults to “first”) — Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.必须是以下选项之一:
"last"
: Take the last token hidden state (like XLNet)."first"
: Take the first token hidden state (like BERT)."mean"
: Take the mean of all tokens hidden states."cls_index"
: Supply a Tensor of classification token position (like GPT/GPT-2)."attn"
: Not implemented now, use multi-head attention.
- summary_use_proj (
bool
, optional, defaults toTrue
) — Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.是否在向量提取后添加投影。
- summary_activation (
str
, optional) — Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.传递
"tanh"
作为输出层的 tanh 激活函数,任何其他值将导致没有激活函数。 - summary_proj_to_labels (
bool
, optional, defaults toTrue
) — Used in the sequence classification and multiple choice models.投影输出是否应该具有
config.num_labels
或config.hidden_size
类别。 - summary_first_dropout (
float
, optional, defaults to 0.1) — Used in the sequence classification and multiple choice models.在投影和激活后使用的丢弃比率。
- start_n_top (
int
, optional, 默认为 5) — 用于 SQuAD 评估脚本。 - end_n_top (
int
, optional, 默认为 5) — 用于 SQuAD 评估脚本。 - mask_token_id (
int
, optional, 默认为 0) — 在MLM上下文中生成文本时,用于识别掩码标记的模型无关参数。 - lang_id (
int
, optional, 默认为 1) — 模型使用的语言ID。此参数用于生成给定语言的文本。
这是用于存储FlaubertModel或TFFlaubertModel配置的配置类。它用于根据指定的参数实例化一个FlauBERT模型,定义模型架构。使用默认值实例化配置将产生与FlauBERT flaubert/flaubert_base_uncased架构类似的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
FlaubertTokenizer
类 transformers.FlaubertTokenizer
< source >( vocab_file merges_file do_lowercase = False unk_token = '' sep_token = '' pad_token = '
参数
- vocab_file (
str
) — 词汇表文件. - merges_file (
str
) — 合并文件. - do_lowercase (
bool
, 可选, 默认为False
) — 控制是否转换为小写. - unk_token (
str
, optional, defaults to"
) — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。" - bos_token (
str
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是
cls_token
。 - sep_token (
str
, optional, defaults to""
) — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。 - pad_token (
str
, 可选, 默认为"
) — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。" - cls_token (
str
, 可选, 默认为""
) — 用于序列分类的分类器标记(对整个序列进行分类而不是对每个标记进行分类)。当使用特殊标记构建时,它是序列的第一个标记。 - mask_token (
str
, 可选, 默认为"
) — 用于屏蔽值的标记。这是在训练此模型时使用的标记,用于屏蔽语言建模。这是模型将尝试预测的标记。" - additional_special_tokens (
List[str]
, 可选, 默认为['
) — 额外的特殊标记列表。', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '] - lang2id (
Dict[str, int]
, optional) — 将语言字符串标识符映射到其ID的字典。 - id2lang (
Dict[int, str]
, optional) — 将语言ID映射到其字符串标识符的字典。
构建一个Flaubert分词器。基于字节对编码。分词过程如下:
- Moses预处理和标记化。
- 标准化所有输入的文本。
- 参数
special_tokens
和函数set_special_tokens
可以用来向词汇表中添加额外的符号(例如 ”classify”)。 - 参数
do_lowercase
控制是否进行小写转换(对于预训练词汇表自动设置)。
此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。一个XLM序列具有以下格式:
- 单一序列:
X - 序列对:
AB
将一系列标记(字符串)转换为单个字符串。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递给序列对分类任务的两个序列中创建一个掩码。一个XLM序列
如果 token_ids_1
是 None
,此方法仅返回掩码的第一部分(0s)。
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model
方法添加特殊标记时,会调用此方法。
FlaubertModel
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None langs: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.LongTensor] = None position_ids: typing.Optional[torch.LongTensor] = None lengths: typing.Optional[torch.LongTensor] = None cache: typing.Optional[typing.Dict[str, torch.FloatTensor]] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
torch.LongTensor
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。你也可以使用attention_mask
来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
范围内: - cache (
Dict[str, torch.FloatTensor]
, optional) — 将字符串映射到torch.FloatTensor
的字典,包含由模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的cache
输出)。可用于加速顺序解码。在前向传递过程中,字典对象将被就地修改以添加新计算的隐藏状态。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_outputs.BaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(FlaubertConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaubertModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaubertModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaubertWithLMHeadModel
类 transformers.FlaubertWithLMHeadModel
< source >( config )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型转换器,顶部带有语言建模头(线性层,权重与输入嵌入绑定)。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None langs: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None lengths: typing.Optional[torch.Tensor] = None cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
torch.LongTensor
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力机制。你也可以使用attention_mask
来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
范围内: - cache (
Dict[str, torch.FloatTensor]
, optional) — 将字符串映射到torch.FloatTensor
的字典,包含由模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的cache
输出)。可用于加速顺序解码。在前向传递过程中,字典对象将被就地修改以添加新计算的隐藏状态。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 语言建模的标签。请注意,标签在模型内部被移位,即你可以设置labels = input_ids
索引在[-100, 0, ..., config.vocab_size]
中选择。所有设置为-100
的标签 将被忽略(掩码),损失仅针对[0, ..., config.vocab_size]
中的标签计算
返回
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,取决于配置(FlaubertConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 掩码语言建模(MLM)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaubertWithLMHeadModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaubertWithLMHeadModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertWithLMHeadModel.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer("The capital of France is <special1>.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of <special1>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<special1> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
FlaubertForSequenceClassification
类 transformers.FlaubertForSequenceClassification
< source >( config )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于 GLUE 任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None langs: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None lengths: typing.Optional[torch.Tensor] = None cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
torch.LongTensor
of shape(batch_size,)
, optional) — 每个句子的长度,可用于避免在填充标记索引上执行注意力机制。你也可以使用attention_mask
来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
范围内: - cache (
Dict[str, torch.FloatTensor]
, optional) — 将字符串映射到torch.FloatTensor
的字典,包含由模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的cache
输出)。可用于加速顺序解码。在前向传递过程中,字典对象将被就地修改以添加新计算的隐藏状态。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或者一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种
元素,取决于配置(FlaubertConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 分类(或者回归,如果 config.num_labels==1)损失。 -
logits (
torch.FloatTensor
形状为(batch_size, config.num_labels)
) — 分类(或者回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或者当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或者当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaubertForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, FlaubertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
多标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, FlaubertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FlaubertForSequenceClassification.from_pretrained(
... "flaubert/flaubert_base_cased", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
FlaubertForMultipleChoice
类 transformers.FlaubertForMultipleChoice
< source >( config *inputs **kwargs )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有多项选择分类头(在池化输出顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None langs: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None lengths: typing.Optional[torch.Tensor] = None cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
torch.LongTensor
of shape(batch_size,)
, optional) — 每个句子的长度,可用于避免在填充标记索引上执行注意力机制。你也可以使用attention_mask
来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
范围内: - cache (
Dict[str, torch.FloatTensor]
, optional) — 将字符串映射到torch.FloatTensor
的字典,包含由模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的cache
输出)。可用于加速顺序解码。在前向传递过程中,字典对象将被就地修改以添加新计算的隐藏状态。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中num_choices
是输入张量第二维度的大小。(参见上面的input_ids
)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(FlaubertConfig)和输入。
-
loss(形状为 (1,) 的
torch.FloatTensor
,可选,当提供labels
时返回)— 分类损失。 -
logits(形状为
(batch_size, num_choices)
的torch.FloatTensor
)— num_choices 是输入张量的第二维度。(见上面的 input_ids)。分类分数(在 SoftMax 之前)。
-
hidden_states(
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出),形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions(
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 由torch.FloatTensor
组成的元组(每一层一个),形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaubertForMultipleChoice 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaubertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForMultipleChoice.from_pretrained("flaubert/flaubert_base_cased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
FlaubertForTokenClassification
类 transformers.FlaubertForTokenClassification
< source >( config )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None langs: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None lengths: typing.Optional[torch.Tensor] = None cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
torch.LongTensor
of shape(batch_size,)
, optional) — 每个句子的长度,可用于避免在填充标记索引上执行注意力机制。你也可以使用attention_mask
来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
范围内: - cache (
Dict[str, torch.FloatTensor]
, optional) — 将字符串映射到torch.FloatTensor
的字典,包含由模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的cache
输出)。可用于加速顺序解码。在前向传递过程中,字典对象将被就地修改以添加新计算的隐藏状态。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算令牌分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或者一个包含
torch.FloatTensor
的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),根据配置(FlaubertConfig)和输入的不同,包含各种元素。
-
loss (
torch.FloatTensor
形状为(1,)
, 可选, 当提供labels
时返回) — 分类损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或者当config.output_hidden_states=True
时返回) — 包含torch.FloatTensor
的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或者当config.output_attentions=True
时返回) — 包含torch.FloatTensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaubertForTokenClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaubertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForTokenClassification.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
FlaubertForQuestionAnsweringSimple
类 transformers.FlaubertForQuestionAnsweringSimple
< source >( config )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有用于抽取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算 span start logits
和 span end logits
)。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None langs: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None lengths: typing.Optional[torch.Tensor] = None cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:- 0 corresponds to a sentence A token,
- 1 corresponds to a sentence B token.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
torch.LongTensor
of shape(batch_size,)
, optional) — 每个句子的长度,可用于避免在填充标记索引上执行注意力机制。你也可以使用attention_mask
来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
范围内: - cache (
Dict[str, torch.FloatTensor]
, optional) — 将字符串映射到torch.FloatTensor
的字典,包含由模型计算的预计算隐藏状态(注意力块中的键和值)(见下面的cache
输出)。可用于加速顺序解码。在前向传递过程中,字典对象将被就地修改以添加新计算的隐藏状态。 - head_mask (
torch.FloatTensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会被考虑用于计算损失。 - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会被考虑用于计算损失。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(FlaubertConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度起始分数(在 SoftMax 之前)。 -
end_logits (
torch.FloatTensor
形状为(batch_size, sequence_length)
) — 跨度结束分数(在 SoftMax 之前)。 -
hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaubertForQuestionAnsweringSimple 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaubertForQuestionAnsweringSimple
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForQuestionAnsweringSimple.from_pretrained("flaubert/flaubert_base_cased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
FlaubertForQuestionAnswering
前进
< source >( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None langs: typing.Optional[torch.Tensor] = None token_type_ids: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None lengths: typing.Optional[torch.Tensor] = None cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None start_positions: typing.Optional[torch.Tensor] = None end_positions: typing.Optional[torch.Tensor] = None is_impossible: typing.Optional[torch.Tensor] = None cls_index: typing.Optional[torch.Tensor] = None p_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.models.flaubert.modeling_flaubert.FlaubertForQuestionAnsweringOutput
或 tuple(torch.FloatTensor)
参数
返回
transformers.models.flaubert.modeling_flaubert.FlaubertForQuestionAnsweringOutput
或 tuple(torch.FloatTensor)
一个 transformers.models.flaubert.modeling_flaubert.FlaubertForQuestionAnsweringOutput
或者一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或者当 config.return_dict=False
时),包含各种
元素,取决于配置(FlaubertConfig)和输入。
- config (FlaubertConfig): 模型配置类,包含模型的所有参数。 使用配置文件初始化不会加载与模型相关的权重,只会加载 配置。查看 from_pretrained() 方法来加载模型权重。
FlaubertForQuestionAnswering 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
使用SquadHead
的问答模型输出的基类。
示例:
>>> from transformers import XLMTokenizer, XLMForQuestionAnswering
>>> import torch
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048")
>>> model = XLMForQuestionAnswering.from_pretrained("FacebookAI/xlm-mlm-en-2048")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
TFFlaubertModel
类 transformers.TFFlaubertModel
< source >( config *inputs **kwargs )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的Flaubert模型变压器输出原始隐藏状态,没有任何特定的头部。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: np.ndarray | tf.Tensor | None = None attention_mask: np.ndarray | tf.Tensor | None = None langs: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None lengths: np.ndarray | tf.Tensor | None = None cache: Optional[Dict[str, tf.Tensor]] = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFBaseModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
- langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is inmodel.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).请参阅多语言文档中详细的使用示例。
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
tf.Tensor
或Numpy array
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。你也可以使用 attention_mask 来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
: - cache (
Dict[str, tf.Tensor]
, optional) — Dictionary string totf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.字典对象在前向传递过程中将被就地修改,以添加新计算出的隐藏状态。
- head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:1
表示头部 未被屏蔽,0
表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFBaseModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutput 或一个 tf.Tensor
的元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,取决于
配置 (FlaubertConfig) 和输入。
-
last_hidden_state (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。 -
hidden_states (
tuple(tf.FloatTensor)
, 可选, 当output_hidden_states=True
被传递或当config.output_hidden_states=True
时返回) —tf.Tensor
的元组(一个用于嵌入的输出 + 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFFlaubertModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFFlaubertModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertModel.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFFlaubertWithLMHeadModel
类 transformers.TFFlaubertWithLMHeadModel
< source >( config *inputs **kwargs )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型转换器,顶部带有语言建模头(线性层,权重与输入嵌入绑定)。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,包含一个或多个输入张量,顺序与文档字符串中给出的顺序相同:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: np.ndarray | tf.Tensor | None = None attention_mask: np.ndarray | tf.Tensor | None = None langs: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None lengths: np.ndarray | tf.Tensor | None = None cache: Optional[Dict[str, tf.Tensor]] = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → transformers.models.flaubert.modeling_tf_flaubert.TFFlaubertWithLMHeadModelOutput
或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
- langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is inmodel.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).请参阅多语言文档中详细的使用示例。
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
tf.Tensor
或Numpy array
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。你也可以使用 attention_mask 来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
: - cache (
Dict[str, tf.Tensor]
, optional) — Dictionary string totf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.字典对象在前向传递过程中将被就地修改,以添加新计算出的隐藏状态。
- head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:1
表示头部 未被屏蔽,0
表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值代替。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.models.flaubert.modeling_tf_flaubert.TFFlaubertWithLMHeadModelOutput
或 tuple(tf.Tensor)
一个 transformers.models.flaubert.modeling_tf_flaubert.TFFlaubertWithLMHeadModelOutput
或一个 tf.Tensor
的元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,具体取决于
配置 (FlaubertConfig) 和输入。
-
logits (
tf.Tensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当output_hidden_states=True
被传递或当config.output_hidden_states=True
时返回) —tf.Tensor
的元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFFlaubertWithLMHeadModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFFlaubertWithLMHeadModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertWithLMHeadModel.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits
TFFlaubertForSequenceClassification
类 transformers.TFFlaubertForSequenceClassification
< source >( config *inputs **kwargs )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有序列分类/回归头(在池化输出之上的线性层),例如用于 GLUE 任务。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None langs: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None lengths: np.ndarray | tf.Tensor | None = None cache: Optional[Dict[str, tf.Tensor]] = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: bool = False ) → transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
- langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is inmodel.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).请参阅多语言文档中详细的使用示例。
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
tf.Tensor
或Numpy array
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。你也可以使用 attention_mask 来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
: - cache (
Dict[str, tf.Tensor]
, optional) — Dictionary string totf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.字典对象在前向传递过程中将被就地修改,以添加新计算出的隐藏状态。
- head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:1
表示头部 未被屏蔽,0
表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
形状为(batch_size,)
, 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,具体取决于
配置 (FlaubertConfig) 和输入。
-
loss (
tf.Tensor
形状为(batch_size, )
, 可选, 当提供labels
时返回) — 分类(或回归,如果 config.num_labels==1)损失。 -
logits (
tf.Tensor
形状为(batch_size, config.num_labels)
) — 分类(或回归,如果 config.num_labels==1)得分(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFFlaubertForSequenceClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFFlaubertForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFFlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
TFFlaubertForMultipleChoice
类 transformers.TFFlaubertForMultipleChoice
< source >( config *inputs **kwargs )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有多项选择分类头(在池化输出顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None langs: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None lengths: np.ndarray | tf.Tensor | None = None cache: Optional[Dict[str, tf.Tensor]] = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: bool = False ) → transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
- langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is inmodel.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).请参阅多语言文档中详细的使用示例。
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
tf.Tensor
或Numpy array
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。你也可以使用 attention_mask 来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
: - cache (
Dict[str, tf.Tensor]
, optional) — Dictionary string totf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.字典对象在前向传递过程中将被就地修改,以添加新计算出的隐藏状态。
- head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:1
表示头部 未被屏蔽,0
表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个由 tf.Tensor
组成的元组(如果
return_dict=False
被传递或当 config.return_dict=False
时),包含根据配置(FlaubertConfig)和输入而定的各种元素。
-
loss (
tf.Tensor
形状为 (batch_size, ), 可选, 当提供labels
时返回) — 分类损失。 -
logits (
tf.Tensor
形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维度。(见上面的 input_ids)。分类分数(在 SoftMax 之前)。
-
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由tf.Tensor
组成的元组(一个用于嵌入的输出 + 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由tf.Tensor
组成的元组(每一层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFFlaubertForMultipleChoice 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFFlaubertForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForMultipleChoice.from_pretrained("flaubert/flaubert_base_cased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFFlaubertForTokenClassification
类 transformers.TFFlaubertForTokenClassification
< source >( config *inputs **kwargs )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有标记分类头(在隐藏状态输出之上的线性层),例如用于命名实体识别(NER)任务。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None langs: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None lengths: np.ndarray | tf.Tensor | None = None cache: Optional[Dict[str, tf.Tensor]] = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: bool = False ) → transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
- langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is inmodel.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).请参阅多语言文档中详细的使用示例。
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
tf.Tensor
或Numpy array
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。你也可以使用 attention_mask 来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
: - cache (
Dict[str, tf.Tensor]
, optional) — Dictionary string totf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.字典对象在前向传递过程中将被就地修改,以添加新计算出的隐藏状态。
- head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:1
表示头部 未被屏蔽,0
表示头部 被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 - labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个由 tf.Tensor
组成的元组(如果
传递了 return_dict=False
或当 config.return_dict=False
时),包含根据配置(FlaubertConfig)和输入的各种元素。
-
loss (
tf.Tensor
形状为(n,)
, 可选, 其中 n 是未掩码标签的数量,当提供labels
时返回) — 分类损失。 -
logits (
tf.Tensor
形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由tf.Tensor
组成的元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由tf.Tensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFFlaubertForTokenClassification 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFFlaubertForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForTokenClassification.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
TFFlaubertForQuestionAnsweringSimple
类 transformers.TFFlaubertForQuestionAnsweringSimple
< source >( config *inputs **kwargs )
参数
- config (FlaubertConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,仅加载配置。查看 from_pretrained() 方法以加载模型权重。
Flaubert 模型,顶部带有用于抽取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出之上的线性层,用于计算 span start logits
和 span end logits
)。
该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个keras.Model子类。可以将其作为常规的TF 2.0 Keras模型使用,并参考TF 2.0文档以了解与一般使用和行为相关的所有事项。
TensorFlow 模型和层在 transformers
中接受两种格式作为输入:
- 将所有输入作为关键字参数(如PyTorch模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用像 model.fit()
这样的方法时,事情应该“正常工作”——只需以 model.fit()
支持的任何格式传递你的输入和标签!然而,如果你想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种方法可以用来将所有输入张量收集到第一个位置参数中:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,包含一个或多个输入张量,按照文档字符串中给出的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,包含一个或多个与文档字符串中给出的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像传递任何其他Python函数一样传递输入!
调用
< source >( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None langs: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None lengths: np.ndarray | tf.Tensor | None = None cache: Optional[Dict[str, tf.Tensor]] = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: bool = False ) → transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
参数
- input_ids (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。
- attention_mask (
Numpy array
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1
for tokens that are not masked,0
for tokens that are masked.
- langs (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is inmodel.config.lang2id
(which is a dictionary string to int) and the language id to language name mapping is inmodel.config.id2lang
(dictionary int to string).请参阅多语言文档中详细的使用示例。
- token_type_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B token.
- position_ids (
tf.Tensor
orNumpy array
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
. - lengths (
tf.Tensor
或Numpy array
形状为(batch_size,)
, 可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。你也可以使用 attention_mask 来达到相同的结果(见上文),这里保留是为了兼容性。选择的索引在[0, ..., input_ids.size(-1)]
: - cache (
Dict[str, tf.Tensor]
, optional) — Dictionary string totf.FloatTensor
that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (seecache
output below). Can be used to speed up sequential decoding.字典对象在前向传递过程中将被就地修改,以添加新计算出的隐藏状态。
- head_mask (
Numpy array
或tf.Tensor
形状为(num_heads,)
或(num_layers, num_heads)
, 可选) — 用于屏蔽自注意力模块中选定头部的掩码。掩码值在[0, 1]
中选择:1
表示头部未被屏蔽,0
表示头部被屏蔽.
- inputs_embeds (
tf.Tensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。此参数只能在eager模式下使用,在graph模式下将使用配置中的值。 - output_hidden_states (
bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数只能在急切模式下使用,在图形模式下将使用配置中的值。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。此参数可以在eager模式下使用,在graph模式下该值将始终设置为True. - 训练 (
bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如dropout模块在训练和评估时具有不同的行为)。 - start_positions (
tf.Tensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度起始位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会用于计算损失。 - end_positions (
tf.Tensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记跨度结束位置(索引)的标签。 位置被限制在序列长度内(sequence_length
)。序列之外的位置不会用于计算损失。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor
元组(如果
return_dict=False
被传递或当 config.return_dict=False
时)包含各种元素,具体取决于
配置 (FlaubertConfig) 和输入。
-
loss (
tf.Tensor
形状为(batch_size, )
, 可选, 当start_positions
和end_positions
提供时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits (
tf.Tensor
形状为(batch_size, sequence_length)
) — 跨度起始分数(在 SoftMax 之前)。 -
end_logits (
tf.Tensor
形状为(batch_size, sequence_length)
) — 跨度结束分数(在 SoftMax 之前)。 -
hidden_states (
tuple(tf.Tensor)
, 可选, 当output_hidden_states=True
被传递或当config.output_hidden_states=True
时返回) —tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。模型在每层输出处的隐藏状态加上初始嵌入输出。
-
attentions (
tuple(tf.Tensor)
, 可选, 当output_attentions=True
被传递或当config.output_attentions=True
时返回) —tf.Tensor
元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFFlaubertForQuestionAnsweringSimple 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFFlaubertForQuestionAnsweringSimple
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForQuestionAnsweringSimple.from_pretrained("flaubert/flaubert_base_cased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]