FSMT
概述
FSMT(FairSeq 机器翻译)模型由 Nathan Ng、Kyra Yee、Alexei Baevski、Myle Ott、Michael Auli 和 Sergey Edunov 在 Facebook FAIR 的 WMT19 新闻翻译任务提交 中提出。
论文的摘要如下:
本文描述了Facebook FAIR在WMT19共享新闻翻译任务中的提交。我们参与了两种语言对和四个语言方向,即英语<->德语和英语<->俄语。继去年的提交之后,我们的基线系统是基于BPE的大型Transformer模型,使用Fairseq序列建模工具包训练,依赖于采样的反向翻译。今年我们尝试了不同的双语数据过滤方案,以及添加过滤后的反向翻译数据。我们还在特定领域的数据上进行了模型集成和微调,然后使用噪声通道模型重新排序进行解码。我们的提交在人类评估活动的所有四个方向中均排名第一。在英语->德语方向,我们的系统显著优于其他系统以及人工翻译。该系统比我们在WMT’18的提交提高了4.5个BLEU分数。
实现说明
- FSMT 使用源和目标词汇对,这些词汇对没有合并为一个。它也不共享嵌入标记。它的分词器与 XLMTokenizer 非常相似,主要模型源自 BartModel。
FSMTConfig
类 transformers.FSMTConfig
< source >( langs = ['en', 'de'] src_vocab_size = 42024 tgt_vocab_size = 42024 activation_function = 'relu' d_model = 1024 max_length = 200 max_position_embeddings = 1024 encoder_ffn_dim = 4096 encoder_layers = 12 encoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_ffn_dim = 4096 decoder_layers = 12 decoder_attention_heads = 16 decoder_layerdrop = 0.0 attention_dropout = 0.0 dropout = 0.1 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 2 is_encoder_decoder = True scale_embedding = True tie_word_embeddings = False num_beams = 5 length_penalty = 1.0 early_stopping = False use_cache = True pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 forced_eos_token_id = 2 **common_kwargs )
参数
- langs (
List[str]
) — 包含源语言和目标语言的列表(例如,[‘en’, ‘ru’])。 - src_vocab_size (
int
) — 编码器的词汇表大小。定义了可以通过传递给编码器中前向方法的inputs_ids
表示的不同标记的数量。 - tgt_vocab_size (
int
) — 解码器的词汇表大小。定义了可以通过传递给解码器中前向方法的inputs_ids
表示的不同标记的数量。 - d_model (
int
, optional, 默认为 1024) — 层和池化层的维度。 - encoder_layers (
int
, optional, defaults to 12) — 编码器层数. - decoder_layers (
int
, optional, defaults to 12) — 解码器层数. - encoder_attention_heads (
int
, optional, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。 - decoder_attention_heads (
int
, optional, defaults to 16) — Transformer解码器中每个注意力层的注意力头数。 - decoder_ffn_dim (
int
, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。 - encoder_ffn_dim (
int
, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。 - activation_function (
str
或Callable
, 可选, 默认为"relu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 - dropout (
float
, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的dropout概率。 - attention_dropout (
float
, optional, 默认为 0.0) — 注意力概率的丢弃比例。 - activation_dropout (
float
, optional, defaults to 0.0) — 全连接层内部激活的dropout比率。 - max_position_embeddings (
int
, optional, 默认为 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。 - init_std (
float
, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。 - scale_embedding (
bool
, optional, defaults toTrue
) — 通过除以 sqrt(d_model) 来缩放嵌入向量。 - bos_token_id (
int
, optional, defaults to 0) — 流的开始标记id. - pad_token_id (
int
, optional, defaults to 1) — 填充标记id. - eos_token_id (
int
, optional, defaults to 2) — 流结束标记的ID。 - decoder_start_token_id (
int
, 可选) — 此模型开始解码时使用eos_token_id
- encoder_layerdrop (
float
, 可选, 默认为 0.0) — Google “layerdrop arxiv”,因为无法用一行解释清楚。 - decoder_layerdrop (
float
, 可选, 默认为 0.0) — Google “layerdrop arxiv”,因为无法用一行解释清楚。 - is_encoder_decoder (
bool
, optional, defaults toTrue
) — 这是否是一个编码器/解码器模型。 - tie_word_embeddings (
bool
, 可选, 默认为False
) — 是否绑定输入和输出的嵌入. - num_beams (
int
, 可选, 默认为 5) — 模型generate
方法中默认使用的束搜索的束数。1 表示不使用束搜索。 - length_penalty (
float
, optional, 默认为 1) — 用于基于束搜索生成的序列长度的指数惩罚。它作为序列长度的指数应用,进而用于除以序列的得分。由于得分是序列的对数似然(即负数),length_penalty
> 0.0 会促进更长的序列,而length_penalty
< 0.0 会鼓励更短的序列。 - early_stopping (
bool
, 可选, 默认为False
) — 模型generate
方法中默认使用的标志。是否在每批至少生成num_beams
个句子时停止束搜索。 - use_cache (
bool
, 可选, 默认为True
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。 - forced_eos_token_id (
int
, 可选, 默认为 2) — 当达到max_length
时,强制作为最后生成的令牌的ID。通常设置为eos_token_id
.
这是用于存储FSMTModel配置的配置类。它用于根据指定的参数实例化FSMT模型,定义模型架构。使用默认值实例化配置将产生与FSMT facebook/wmt19-en-ru架构类似的配置。
配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。
示例:
>>> from transformers import FSMTConfig, FSMTModel
>>> # Initializing a FSMT facebook/wmt19-en-ru style configuration
>>> config = FSMTConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = FSMTModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
FSMTTokenizer
类 transformers.FSMTTokenizer
< source >( langs = 无 src_vocab_file = 无 tgt_vocab_file = 无 merges_file = 无 do_lower_case = 假 unk_token = '' sep_token = '' pad_token = '
参数
- langs (
List[str]
, 可选) — 用于翻译的两种语言的列表,例如["en", "ru"]
. - src_vocab_file (
str
, optional) — 包含源语言词汇表的文件。 - tgt_vocab_file (
st
, optional) — 包含目标语言词汇表的文件。 - merges_file (
str
, optional) — 包含合并的文件. - do_lower_case (
bool
, 可选, 默认为False
) — 是否在分词时将输入转换为小写。 - unk_token (
str
, optional, defaults to"
) — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。" - bos_token (
str
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是
cls_token
。 - sep_token (
str
, 可选, 默认为""
) — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。 - pad_token (
str
, optional, defaults to"
) — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。"
构建一个FAIRSEQ Transformer分词器。基于字节对编码。分词过程如下:
- Moses预处理和标记化。
- 标准化所有输入的文本。
- 参数
special_tokens
和函数set_special_tokens
可以用来向词汇表中添加额外的符号(例如 ”classify”)。 - 参数
langs
定义了一对语言。
此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。FAIRSEQ Transformer序列的格式如下:
- 单一序列:
X - 序列对:
AB
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model
方法添加特殊标记时,会调用此方法。
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
从传递给序列对分类任务的两个序列中创建一个掩码。FAIRSEQ
Transformer序列对掩码具有以下格式:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
如果 token_ids_1
是 None
,此方法仅返回掩码的第一部分(0s)。
从传递给序列对分类任务的两个序列中创建一个掩码。一个FAIRSEQ_TRANSFORMER序列对掩码具有以下格式:
FSMTModel
类 transformers.FSMTModel
< source >( config: FSMTConfig )
参数
- config (FSMTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的FSMT模型输出原始隐藏状态,没有任何特定的头部。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: LongTensor attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.Tuple[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用
FSTMTokenizer
获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 - attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- decoder_input_ids (
torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
FSMT 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用了past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。 - decoder_attention_mask (
torch.BoolTensor
of shape(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于在编码器中取消选择注意力模块的特定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被掩码,
- 0 表示头部 被掩码.
- decoder_head_mask (
torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于在解码器中取消选择注意力模块的特定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头 未被掩码,
- 0 表示头 被掩码.
- cross_attn_head_mask (
torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于在解码器中取消选择交叉注意力模块的特定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被掩码,
- 0 表示头部 被掩码.
- encoder_outputs (
Tuple(torch.FloatTensor)
, 可选) — 元组由 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
) 组成last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。 - past_key_values (
Tuple(torch.FloatTensor)
长度为config.n_layers
,每个元组包含4个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含预计算的注意力块的关键和值隐藏状态。可用于加速解码。 如果使用了past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的关键值状态提供给此模型的),而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passingdecoder_input_ids
you can choose to directly pass an embedded representation. Ifpast_key_values
is used, optionally only the lastdecoder_inputs_embeds
have to be input (seepast_key_values
). This is useful if you want more control over how to convertdecoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,decoder_inputs_embeds
将取inputs_embeds
的值。 - use_cache (
bool
, 可选, 默认为True
) — 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。
返回
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(FSMTConfig)和输入。
-
last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层输出的隐藏状态序列。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
, 可选, 当传递了use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。解码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
, 可选, 当传递了output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为(batch_size, sequence_length, hidden_size)
。编码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
, 可选, 当传递了output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FSMTModel 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FSMTModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/wmt19-ru-en")
>>> model = FSMTModel.from_pretrained("facebook/wmt19-ru-en")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FSMTForConditionalGeneration
类 transformers.FSMTForConditionalGeneration
< source >( config: FSMTConfig )
参数
- config (FSMTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
带有语言建模头的FSMT模型。可用于摘要生成。
该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。
该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。
前进
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.Tuple[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
参数
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.可以使用
FSTMTokenizer
获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 - attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- decoder_input_ids (
torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
FSMT 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用了past_key_values
,则可以选择只输入最后一个decoder_input_ids
(参见past_key_values
)。 - decoder_attention_mask (
torch.BoolTensor
of shape(batch_size, target_sequence_length)
, optional) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认情况下也会使用因果掩码。 - head_mask (
torch.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被屏蔽,
- 0 表示头部 被屏蔽.
- decoder_head_mask (
torch.Tensor
形状为(decoder_layers, decoder_attention_heads)
, 可选) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在[0, 1]
中选择:- 1 表示头部 未被掩码,
- 0 表示头部 被掩码.
- cross_attn_head_mask (
torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于在解码器中取消选择交叉注意力模块的特定头的掩码。掩码值在[0, 1]
中选择:- 1 表示头 未被掩码,
- 0 表示头 被掩码.
- encoder_outputs (
Tuple(torch.FloatTensor)
, 可选) — 元组由 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
) 组成last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力机制中。 - past_key_values (
Tuple(torch.FloatTensor)
长度为config.n_layers
,每个元组包含4个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
的张量) — 包含预计算的注意力块的关键和值隐藏状态。可用于加速解码。 如果使用了past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(那些没有将其过去的关键值状态提供给此模型的),而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望对如何将input_ids
索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 - decoder_inputs_embeds (
torch.FloatTensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passingdecoder_input_ids
you can choose to directly pass an embedded representation. Ifpast_key_values
is used, optionally only the lastdecoder_inputs_embeds
have to be input (seepast_key_values
). This is useful if you want more control over how to convertdecoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,decoder_inputs_embeds
将取inputs_embeds
的值。 - use_cache (
bool
, 可选, 默认为True
) — 如果设置为True
,past_key_values
键值状态将被返回,并可用于加速解码(参见past_key_values
)。 - output_attentions (
bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 - output_hidden_states (
bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
。 - return_dict (
bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[0, ..., config.vocab_size]
或 -100 之间(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略 (掩码),损失仅针对标签在[0, ..., config.vocab_size]
之间的标记计算。
返回
transformers.modeling_outputs.Seq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个由
torch.FloatTensor
组成的元组(如果传递了 return_dict=False
或当 config.return_dict=False
时),包含各种
元素,具体取决于配置(FSMTConfig)和输入。
-
loss (
torch.FloatTensor
形状为(1,)
,可选,当提供labels
时返回) — 语言建模损失。 -
logits (
torch.FloatTensor
形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。 -
past_key_values (
tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组包含 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的额外张量。包含预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见
past_key_values
输入)加速顺序解码。 -
decoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。解码器在每层输出处的隐藏状态加上初始嵌入输出。
-
decoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state (
torch.FloatTensor
形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层输出的隐藏状态序列。 -
encoder_hidden_states (
tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 由torch.FloatTensor
组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为(batch_size, sequence_length, hidden_size)
。编码器在每层输出处的隐藏状态加上初始嵌入输出。
-
encoder_attentions (
tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 由torch.FloatTensor
组成的元组(每层一个)形状为(batch_size, num_heads, sequence_length, sequence_length)
。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FSMTForConditionalGeneration 的前向方法,重写了 __call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但之后应该调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
翻译示例:
>>> from transformers import AutoTokenizer, FSMTForConditionalGeneration
>>> mname = "facebook/wmt19-ru-en"
>>> model = FSMTForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> src_text = "Машинное обучение - это здорово, не так ли?"
>>> input_ids = tokenizer(src_text, return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
"Machine learning is great, isn't it?"