Transformers 文档

FSMT

FSMT

概述

FSMT(FairSeq 机器翻译)模型由 Nathan Ng、Kyra Yee、Alexei Baevski、Myle Ott、Michael Auli 和 Sergey Edunov 在 Facebook FAIR 的 WMT19 新闻翻译任务提交 中提出。

论文的摘要如下:

本文描述了Facebook FAIR在WMT19共享新闻翻译任务中的提交。我们参与了两种语言对和四个语言方向,即英语<->德语和英语<->俄语。继去年的提交之后,我们的基线系统是基于BPE的大型Transformer模型,使用Fairseq序列建模工具包训练,依赖于采样的反向翻译。今年我们尝试了不同的双语数据过滤方案,以及添加过滤后的反向翻译数据。我们还在特定领域的数据上进行了模型集成和微调,然后使用噪声通道模型重新排序进行解码。我们的提交在人类评估活动的所有四个方向中均排名第一。在英语->德语方向,我们的系统显著优于其他系统以及人工翻译。该系统比我们在WMT’18的提交提高了4.5个BLEU分数。

该模型由stas贡献。原始代码可以在这里找到。

实现说明

  • FSMT 使用源和目标词汇对,这些词汇对没有合并为一个。它也不共享嵌入标记。它的分词器与 XLMTokenizer 非常相似,主要模型源自 BartModel

FSMTConfig

transformers.FSMTConfig

< >

( langs = ['en', 'de'] src_vocab_size = 42024 tgt_vocab_size = 42024 activation_function = 'relu' d_model = 1024 max_length = 200 max_position_embeddings = 1024 encoder_ffn_dim = 4096 encoder_layers = 12 encoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_ffn_dim = 4096 decoder_layers = 12 decoder_attention_heads = 16 decoder_layerdrop = 0.0 attention_dropout = 0.0 dropout = 0.1 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 2 is_encoder_decoder = True scale_embedding = True tie_word_embeddings = False num_beams = 5 length_penalty = 1.0 early_stopping = False use_cache = True pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 forced_eos_token_id = 2 **common_kwargs )

参数

  • langs (List[str]) — 包含源语言和目标语言的列表(例如,[‘en’, ‘ru’])。
  • src_vocab_size (int) — 编码器的词汇表大小。定义了可以通过传递给编码器中前向方法的inputs_ids表示的不同标记的数量。
  • tgt_vocab_size (int) — 解码器的词汇表大小。定义了可以通过传递给解码器中前向方法的inputs_ids表示的不同标记的数量。
  • d_model (int, optional, 默认为 1024) — 层和池化层的维度。
  • encoder_layers (int, optional, defaults to 12) — 编码器层数.
  • decoder_layers (int, optional, defaults to 12) — 解码器层数.
  • encoder_attention_heads (int, optional, 默认为 16) — Transformer 编码器中每个注意力层的注意力头数。
  • decoder_attention_heads (int, optional, defaults to 16) — Transformer解码器中每个注意力层的注意力头数。
  • decoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • encoder_ffn_dim (int, 可选, 默认为 4096) — 解码器中“中间”(通常称为前馈)层的维度。
  • activation_function (strCallable, 可选, 默认为 "relu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持 "gelu""relu""silu""gelu_new"
  • dropout (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的dropout概率。
  • attention_dropout (float, optional, 默认为 0.0) — 注意力概率的丢弃比例。
  • activation_dropout (float, optional, defaults to 0.0) — 全连接层内部激活的dropout比率。
  • max_position_embeddings (int, optional, 默认为 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512 或 1024 或 2048)。
  • init_std (float, optional, 默认为 0.02) — 用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差。
  • scale_embedding (bool, optional, defaults to True) — 通过除以 sqrt(d_model) 来缩放嵌入向量。
  • bos_token_id (int, optional, defaults to 0) — 流的开始标记id.
  • pad_token_id (int, optional, defaults to 1) — 填充标记id.
  • eos_token_id (int, optional, defaults to 2) — 流结束标记的ID。
  • decoder_start_token_id (int, 可选) — 此模型开始解码时使用 eos_token_id
  • encoder_layerdrop (float, 可选, 默认为 0.0) — Google “layerdrop arxiv”,因为无法用一行解释清楚。
  • decoder_layerdrop (float, 可选, 默认为 0.0) — Google “layerdrop arxiv”,因为无法用一行解释清楚。
  • is_encoder_decoder (bool, optional, defaults to True) — 这是否是一个编码器/解码器模型。
  • tie_word_embeddings (bool, 可选, 默认为 False) — 是否绑定输入和输出的嵌入.
  • num_beams (int, 可选, 默认为 5) — 模型generate方法中默认使用的束搜索的束数。1 表示不使用束搜索。
  • length_penalty (float, optional, 默认为 1) — 用于基于束搜索生成的序列长度的指数惩罚。它作为序列长度的指数应用,进而用于除以序列的得分。由于得分是序列的对数似然(即负数),length_penalty > 0.0 会促进更长的序列,而 length_penalty < 0.0 会鼓励更短的序列。
  • early_stopping (bool, 可选, 默认为 False) — 模型generate方法中默认使用的标志。是否在每批至少生成num_beams个句子时停止束搜索。
  • use_cache (bool, 可选, 默认为 True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。
  • forced_eos_token_id (int, 可选, 默认为 2) — 当达到max_length时,强制作为最后生成的令牌的ID。通常设置为eos_token_id.

这是用于存储FSMTModel配置的配置类。它用于根据指定的参数实例化FSMT模型,定义模型架构。使用默认值实例化配置将产生与FSMT facebook/wmt19-en-ru架构类似的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import FSMTConfig, FSMTModel

>>> # Initializing a FSMT facebook/wmt19-en-ru style configuration
>>> config = FSMTConfig()

>>> # Initializing a model (with random weights) from the configuration
>>> model = FSMTModel(config)

>>> # Accessing the model configuration
>>> configuration = model.config

FSMTTokenizer

transformers.FSMTTokenizer

< >

( langs = 无 src_vocab_file = 无 tgt_vocab_file = 无 merges_file = 无 do_lower_case = 假 unk_token = '' bos_token = '' sep_token = '' pad_token = '' **kwargs )

参数

  • langs (List[str], 可选) — 用于翻译的两种语言的列表,例如 ["en", "ru"].
  • src_vocab_file (str, optional) — 包含源语言词汇表的文件。
  • tgt_vocab_file (st, optional) — 包含目标语言词汇表的文件。
  • merges_file (str, optional) — 包含合并的文件.
  • do_lower_case (bool, 可选, 默认为 False) — 是否在分词时将输入转换为小写。
  • unk_token (str, optional, defaults to "") — 未知标记。不在词汇表中的标记无法转换为ID,而是设置为这个标记。
  • bos_token (str, optional, defaults to "<s>") — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

    在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是cls_token

  • sep_token (str, 可选, 默认为 "") — 分隔符标记,用于从多个序列构建序列时,例如用于序列分类的两个序列或用于问答的文本和问题。它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token (str, optional, defaults to "") — 用于填充的标记,例如在对不同长度的序列进行批处理时使用。

构建一个FAIRSEQ Transformer分词器。基于字节对编码。分词过程如下:

  • Moses预处理和标记化。
  • 标准化所有输入的文本。
  • 参数 special_tokens 和函数 set_special_tokens 可以用来向词汇表中添加额外的符号(例如 ”classify”)。
  • 参数 langs 定义了一对语言。

此分词器继承自PreTrainedTokenizer,其中包含了大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — 特殊令牌将被添加到的ID列表。
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

带有适当特殊标记的输入ID列表。

通过连接和添加特殊标记,从序列或序列对构建序列分类任务的模型输入。FAIRSEQ Transformer序列的格式如下:

  • 单一序列: X
  • 序列对: A B

get_special_tokens_mask

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。
  • already_has_special_tokens (bool, optional, defaults to False) — 是否已经为模型格式化了包含特殊标记的标记列表。

返回

List[int]

一个整数列表,范围在[0, 1]:1表示特殊标记,0表示序列标记。

从没有添加特殊标记的标记列表中检索序列ID。当使用标记器的prepare_for_model方法添加特殊标记时,会调用此方法。

create_token_type_ids_from_sequences

< >

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) List[int]

参数

  • token_ids_0 (List[int]) — ID列表.
  • token_ids_1 (List[int], optional) — 可选的第二个序列对的ID列表。

返回

List[int]

根据给定序列的token type IDs列表。

从传递给序列对分类任务的两个序列中创建一个掩码。FAIRSEQ

Transformer序列对掩码具有以下格式:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,此方法仅返回掩码的第一部分(0s)。

从传递给序列对分类任务的两个序列中创建一个掩码。一个FAIRSEQ_TRANSFORMER序列对掩码具有以下格式:

保存词汇表

< >

( 保存目录: str 文件名前缀: typing.Optional[str] = None )

FSMTModel

transformers.FSMTModel

< >

( config: FSMTConfig )

参数

  • config (FSMTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的FSMT模型输出原始隐藏状态,没有任何特定的头部。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: LongTensor attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.Tuple[torch.FloatTensor]] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None decoder_inputs_embeds: typing.Optional[torch.FloatTensor] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用FSTMTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    FSMT 使用 eos_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), 可选) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择注意力模块的特定头的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头 未被掩码,
    • 0 表示头 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • encoder_outputs (Tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力中。
  • past_key_values (Tuple(torch.FloatTensor) 长度为 config.n_layers,每个元组包含4个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含预计算的注意力块的关键和值隐藏状态。可用于加速解码。 如果使用了 past_key_values,用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有将其过去的关键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望对如何将input_ids索引转换为相关向量有更多控制,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选, 默认为 True) — 如果设置为 True,将返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.modeling_outputs.Seq2SeqModelOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(FSMTConfig)和输入。

  • last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层输出的隐藏状态序列。

    如果使用了 past_key_values,则只输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选, 当传递了 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size), 可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor), 可选, 当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每一层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每一层输出处的隐藏状态加上可选的初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor), 可选, 当传递了 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FSMTModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FSMTModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/wmt19-ru-en")
>>> model = FSMTModel.from_pretrained("facebook/wmt19-ru-en")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FSMTForConditionalGeneration

transformers.FSMTForConditionalGeneration

< >

( config: FSMTConfig )

参数

  • config (FSMTConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

带有语言建模头的FSMT模型。可用于摘要生成。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None decoder_input_ids: typing.Optional[torch.LongTensor] = None decoder_attention_mask: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.Tensor] = None decoder_head_mask: typing.Optional[torch.Tensor] = None cross_attn_head_mask: typing.Optional[torch.Tensor] = None encoder_outputs: typing.Optional[typing.Tuple[torch.FloatTensor]] = None past_key_values: typing.Optional[typing.Tuple[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.Tensor] = None decoder_inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

    可以使用FSTMTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — Indices of decoder input sequence tokens in the vocabulary.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是解码器输入ID?

    FSMT 使用 eos_token_id 作为 decoder_input_ids 生成的起始标记。如果使用了 past_key_values,则可以选择只输入最后一个 decoder_input_ids(参见 past_key_values)。

  • decoder_attention_mask (torch.BoolTensor of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。默认情况下也会使用因果掩码。
  • head_mask (torch.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 用于在编码器中屏蔽注意力模块中选定的头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被屏蔽,
    • 0 表示头部 被屏蔽.
  • decoder_head_mask (torch.Tensor 形状为 (decoder_layers, decoder_attention_heads), 可选) — 用于在解码器中取消选择注意力模块的特定头部的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头部 未被掩码,
    • 0 表示头部 被掩码.
  • cross_attn_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 用于在解码器中取消选择交叉注意力模块的特定头的掩码。掩码值在 [0, 1] 中选择:
    • 1 表示头 未被掩码,
    • 0 表示头 被掩码.
  • encoder_outputs (Tuple(torch.FloatTensor), 可选) — 元组由 (last_hidden_state, 可选: hidden_states, 可选: attentions) 组成 last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size) 是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力机制中。
  • past_key_values (Tuple(torch.FloatTensor) 长度为 config.n_layers,每个元组包含4个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含预计算的注意力块的关键和值隐藏状态。可用于加速解码。 如果使用了 past_key_values,用户可以选择仅输入形状为 (batch_size, 1) 的最后一个 decoder_input_ids(那些没有将其过去的关键值状态提供给此模型的),而不是所有形状为 (batch_size, sequence_length)decoder_input_ids
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望对如何将 input_ids 索引转换为相关向量有更多控制权,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, target_sequence_length, hidden_size), optional) — Optionally, instead of passing decoder_input_ids you can choose to directly pass an embedded representation. If past_key_values is used, optionally only the last decoder_inputs_embeds have to be input (see past_key_values). This is useful if you want more control over how to convert decoder_input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

    如果decoder_input_idsdecoder_inputs_embeds都未设置,decoder_inputs_embeds将取inputs_embeds的值。

  • use_cache (bool, 可选, 默认为 True) — 如果设置为 Truepast_key_values 键值状态将被返回,并可用于加速解码(参见 past_key_values)。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在 [0, ..., config.vocab_size] 或 -100 之间(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略 (掩码),损失仅针对标签在 [0, ..., config.vocab_size] 之间的标记计算。

返回

transformers.modeling_outputs.Seq2SeqLMOutputtuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(FSMTConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当提供 labels 时返回) — 语言建模损失。

  • logits (torch.FloatTensor 形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组包含 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的额外张量。

    包含预计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于(参见 past_key_values 输入)加速顺序解码。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    解码器在每层输出处的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor 形状为 (batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层输出的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 由 torch.FloatTensor 组成的元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每层的输出)形状为 (batch_size, sequence_length, hidden_size)

    编码器在每层输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 由 torch.FloatTensor 组成的元组(每层一个)形状为 (batch_size, num_heads, sequence_length, sequence_length)

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FSMTForConditionalGeneration 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

翻译示例:

>>> from transformers import AutoTokenizer, FSMTForConditionalGeneration

>>> mname = "facebook/wmt19-ru-en"
>>> model = FSMTForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)

>>> src_text = "Машинное обучение - это здорово, не так ли?"
>>> input_ids = tokenizer(src_text, return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
"Machine learning is great, isn't it?"
< > Update on GitHub