Transformers 文档

视觉文本双编码器

VisionTextDualEncoder

概述

VisionTextDualEncoderModel 可以用来初始化一个视觉-文本双编码器模型,使用任何预训练的视觉自编码模型作为视觉编码器(例如 ViT, BEiT, DeiT)和任何预训练的文本自编码模型作为文本编码器(例如 RoBERTa, BERT)。在视觉和文本编码器的顶部添加了两个投影层,将输出嵌入投影到一个共享的潜在空间。投影层是随机初始化的,因此模型应该在下游任务上进行微调。该模型可以用于使用类似CLIP的对比图像-文本训练来对齐视觉-文本嵌入,然后可以用于零样本视觉任务,如图像分类或检索。

LiT: Zero-Shot Transfer with Locked-image Text Tuning中展示了如何利用预训练(锁定/冻结)的图像和文本模型进行对比学习,从而在新的零样本视觉任务(如图像分类或检索)上取得显著改进。

VisionTextDualEncoderConfig

transformers.VisionTextDualEncoderConfig

< >

( projection_dim = 512 logit_scale_init_value = 2.6592 **kwargs )

参数

  • projection_dim (int, optional, 默认为 512) — 文本和视觉投影层的维度。
  • logit_scale_init_value (float, optional, 默认为 2.6592) — logit_scale 参数的初始值。默认值按照原始 CLIP 实现使用。
  • kwargs (可选) — 关键字参数字典。

VisionTextDualEncoderConfig 是用于存储 VisionTextDualEncoderModel 配置的配置类。它用于根据指定的参数实例化 VisionTextDualEncoderModel 模型,定义文本模型和视觉模型的配置。

配置对象继承自PretrainedConfig,可用于控制模型输出。阅读PretrainedConfig的文档以获取更多信息。

示例:

>>> from transformers import ViTConfig, BertConfig, VisionTextDualEncoderConfig, VisionTextDualEncoderModel

>>> # Initializing a BERT and ViT configuration
>>> config_vision = ViTConfig()
>>> config_text = BertConfig()

>>> config = VisionTextDualEncoderConfig.from_vision_text_configs(config_vision, config_text, projection_dim=512)

>>> # Initializing a BERT and ViT model (with random weights)
>>> model = VisionTextDualEncoderModel(config=config)

>>> # Accessing the model configuration
>>> config_vision = model.config.vision_config
>>> config_text = model.config.text_config

>>> # Saving the model, including its configuration
>>> model.save_pretrained("vit-bert")

>>> # loading model and config from pretrained folder
>>> vision_text_config = VisionTextDualEncoderConfig.from_pretrained("vit-bert")
>>> model = VisionTextDualEncoderModel.from_pretrained("vit-bert", config=vision_text_config)

from_vision_text_configs

< >

( vision_config: PretrainedConfig text_config: PretrainedConfig **kwargs ) VisionTextDualEncoderConfig

返回

VisionTextDualEncoderConfig

配置对象的一个实例

从文本模型配置和视觉模型配置实例化一个VisionTextDualEncoderConfig(或派生类)。

VisionTextDualEncoderProcessor

transformers.VisionTextDualEncoderProcessor

< >

( image_processor = 无 tokenizer = 无 **kwargs )

参数

构建一个VisionTextDualEncoder处理器,它将图像处理器和分词器封装到一个单一的处理器中。

VisionTextDualEncoderProcessor 提供了 AutoImageProcessorAutoTokenizer 的所有功能。 有关更多信息,请参阅 __call__()decode()

batch_decode

< >

( *args **kwargs )

此方法将其所有参数转发给 VisionTextDualEncoderTokenizer 的 batch_decode()。请参阅该方法的文档字符串以获取更多信息。

解码

< >

( *args **kwargs )

此方法将其所有参数转发给VisionTextDualEncoderTokenizer的decode()。 请参阅此方法的文档字符串以获取更多信息。

Pytorch
Hide Pytorch content

VisionTextDualEncoderModel

transformers.VisionTextDualEncoderModel

< >

( config: typing.Optional[transformers.models.vision_text_dual_encoder.configuration_vision_text_dual_encoder.VisionTextDualEncoderConfig] = None vision_model: typing.Optional[transformers.modeling_utils.PreTrainedModel] = None text_model: typing.Optional[transformers.modeling_utils.PreTrainedModel] = None )

参数

  • config (VisionEncoderDecoderConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

该类可用于初始化一个视觉-文本双编码器模型,其中视觉编码器可以是任何预训练的视觉自编码模型,文本编码器可以是任何预训练的文本模型。视觉和文本编码器通过from_pretrained()方法加载。投影层会自动添加到模型中,并且应在下游任务(如对比图像-文本建模)上进行微调。

LiT: Zero-Shot Transfer with Locked-image Text Tuning中展示了如何利用预训练(锁定/冻结)的图像和文本模型进行对比学习,从而在新的零样本视觉任务(如图像分类或检索)上取得显著改进。

在训练/微调这样的Vision-Text-Dual-Encoder模型之后,它可以像其他模型一样保存/加载(更多信息请参见示例)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个PyTorch torch.nn.Module 子类。 将其作为常规的PyTorch模块使用,并参考PyTorch文档以获取与一般使用和行为相关的所有信息。

前进

< >

( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None return_loss: typing.Optional[bool] = None token_type_ids: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.clip.modeling_clip.CLIPOutputtuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。默认情况下,如果您提供了填充,它将被忽略。像素值可以使用图像处理器获得(例如,如果您使用ViT作为编码器,您应该使用AutoImageProcessor)。详情请参见 ViTImageProcessor.call().
  • return_loss (bool, optional) — 是否返回对比损失。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.models.clip.modeling_clip.CLIPOutputtuple(torch.FloatTensor)

一个 transformers.models.clip.modeling_clip.CLIPOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种元素,具体取决于配置(VisionTextDualEncoderConfig)和输入。

  • loss (torch.FloatTensor 形状为 (1,)可选,当 return_lossTrue 时返回) — 图像-文本相似度的对比损失。
  • logits_per_image (torch.FloatTensor 形状为 (image_batch_size, text_batch_size)) — image_embedstext_embeds 之间的缩放点积分数。这表示图像-文本相似度分数。
  • logits_per_text (torch.FloatTensor 形状为 (text_batch_size, image_batch_size)) — text_embedsimage_embeds 之间的缩放点积分数。这表示文本-图像相似度分数。
  • text_embeds (torch.FloatTensor 形状为 (batch_size, output_dim) — 通过将投影层应用于 CLIPTextModel 的池化输出获得的文本嵌入。
  • image_embeds (torch.FloatTensor 形状为 (batch_size, output_dim) — 通过将投影层应用于 CLIPVisionModel 的池化输出获得的图像嵌入。
  • text_model_output (BaseModelOutputWithPooling) — CLIPTextModel 的输出。
  • vision_model_output (BaseModelOutputWithPooling) — CLIPVisionModel 的输出。

VisionTextDualEncoderModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> from transformers import (
...     VisionTextDualEncoderModel,
...     VisionTextDualEncoderProcessor,
...     AutoImageProcessor,
...     AutoTokenizer,
... )

>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
>>> model = VisionTextDualEncoderModel.from_vision_text_pretrained(
...     "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )

>>> # contrastive training
>>> urls = [
...     "http://images.cocodataset.org/val2017/000000039769.jpg",
...     "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg",
... ]
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls]
>>> inputs = processor(
...     text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="pt", padding=True
... )
>>> outputs = model(
...     input_ids=inputs.input_ids,
...     attention_mask=inputs.attention_mask,
...     pixel_values=inputs.pixel_values,
...     return_loss=True,
... )
>>> loss, logits_per_image = outputs.loss, outputs.logits_per_image  # this is the image-text similarity score

>>> # save and load from pretrained
>>> model.save_pretrained("vit-bert")
>>> model = VisionTextDualEncoderModel.from_pretrained("vit-bert")

>>> # inference
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities
TensorFlow
Hide TensorFlow content

FlaxVisionTextDualEncoderModel

transformers.FlaxVisionTextDualEncoderModel

< >

( config: VisionTextDualEncoderConfig input_shape: typing.Optional[typing.Tuple] = None seed: int = 0 dtype: dtype = _do_init: bool = True **kwargs )

参数

  • config (VisionTextDualEncoderConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16 (on GPUs) and jax.numpy.bfloat16 (on TPUs).

    这可以用于在GPU或TPU上启用混合精度训练或半精度推理。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。

    如果您希望更改模型参数的dtype,请参阅to_fp16()to_bf16().

该类可用于初始化一个视觉-文本双编码器模型,其中视觉编码器可以是任何预训练的视觉自编码模型,文本编码器可以是任何预训练的文本模型。视觉和文本编码器通过from_pretrained()方法加载。投影层会自动添加到模型中,并且应在下游任务(如对比图像-文本建模)上进行微调。

LiT: Zero-Shot Transfer with Locked-image Text Tuning中展示了如何利用预训练(锁定/冻结)的图像和文本模型进行对比学习,从而在新的零样本视觉任务(如图像分类或检索)上取得显著改进。

在训练/微调这样的Vision-Text-Dual-Encoder模型之后,它可以像其他模型一样保存/加载(更多信息请参见示例)。

该模型继承自PreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个 flax.linen.Module 子类。可以将其作为常规的 Flax linen 模块使用,并参考 Flax 文档以获取与一般用法和行为相关的所有信息。

最后,该模型支持JAX的固有特性,例如:

__call__

< >

( input_ids pixel_values attention_mask = None position_ids = None token_type_ids = None params: dict = None dropout_rng: = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.clip.modeling_flax_clip.FlaxCLIPOutputtuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — 像素值。默认情况下,如果您提供了填充,它将被忽略。像素值可以使用图像处理器获得(例如,如果您使用ViT作为编码器,您应该使用AutoImageProcessor)。详情请参见 ViTImageProcessor.call().
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.models.clip.modeling_flax_clip.FlaxCLIPOutputtuple(torch.FloatTensor)

一个 transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput 或一个由 torch.FloatTensor 组成的元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含各种 元素,具体取决于配置(VisionTextDualEncoderConfig)和输入。

  • logits_per_image:(jnp.ndarray 形状为 (image_batch_size, text_batch_size)) — image_embedstext_embeds 之间的缩放点积分数。这表示图像-文本 相似度分数。
  • logits_per_text:(jnp.ndarray 形状为 (text_batch_size, image_batch_size)) — text_embedsimage_embeds 之间的缩放点积分数。这表示文本-图像 相似度分数。
  • text_embeds(jnp.ndarray 形状为 (batch_size, output_dim) — 通过将投影层应用于 FlaxCLIPTextModel 的池化输出获得的文本嵌入。
  • image_embeds(jnp.ndarray 形状为 (batch_size, output_dim) — 通过将投影层应用于 FlaxCLIPVisionModel 的池化输出获得的图像嵌入。
  • text_model_output(FlaxBaseModelOutputWithPooling): FlaxCLIPTextModel 的输出。
  • vision_model_output(FlaxBaseModelOutputWithPooling): FlaxCLIPVisionModel 的输出。

FlaxVisionTextDualEncoderModel 的 forward 方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> import jax
>>> from transformers import (
...     FlaxVisionTextDualEncoderModel,
...     VisionTextDualEncoderProcessor,
...     AutoImageProcessor,
...     AutoTokenizer,
... )

>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> image_processor = AutoImageProcesor.from_pretrained("google/vit-base-patch16-224")
>>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
>>> model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
...     "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )

>>> # contrastive training
>>> urls = [
...     "http://images.cocodataset.org/val2017/000000039769.jpg",
...     "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg",
... ]
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls]
>>> inputs = processor(
...     text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="np", padding=True
... )
>>> outputs = model(
...     input_ids=inputs.input_ids,
...     attention_mask=inputs.attention_mask,
...     pixel_values=inputs.pixel_values,
... )
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score

>>> # save and load from pretrained
>>> model.save_pretrained("vit-bert")
>>> model = FlaxVisionTextDualEncoderModel.from_pretrained("vit-bert")

>>> # inference
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = jax.nn.softmax(logits_per_image, axis=1)  # we can take the softmax to get the label probabilities
JAX
Hide JAX content

TFVisionTextDualEncoderModel

transformers.TFVisionTextDualEncoderModel

< >

( config: 可选[VisionTextDualEncoderConfig] = 无 vision_model: 可选[TFPreTrainedModel] = 无 text_model: 可选[TFPreTrainedModel] = 无 )

参数

  • config (VisionEncoderDecoderConfig) — 包含模型所有参数的模型配置类。 使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

该类可用于初始化一个视觉-文本双编码器模型,其中视觉编码器可以是任何预训练的视觉自编码模型,文本编码器可以是任何预训练的文本模型。视觉和文本编码器通过from_pretrained()方法加载。投影层会自动添加到模型中,并且应在下游任务(如对比图像-文本建模)上进行微调。

LiT: Zero-Shot Transfer with Locked-image Text Tuning中展示了如何利用预训练(锁定/冻结)的图像和文本模型进行对比学习,从而在新的零样本视觉任务(如图像分类或检索)上取得显著改进。

在训练/微调这样的Vision-Text-Dual-Encoder模型之后,它可以像其他模型一样保存/加载(更多信息请参见示例)。

该模型继承自 TFPreTrainedModel。请查看超类文档以了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入的大小、修剪头部等)。

该模型也是一个Keras Model子类。可以将其作为常规的Keras模型使用,并参考TF文档以获取与一般使用和行为相关的所有信息。

调用

< >

( input_ids: tf.Tensor | None = None pixel_values: tf.Tensor | None = None attention_mask: tf.Tensor | None = None position_ids: tf.Tensor | None = None return_loss: Optional[bool] = None token_type_ids: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) transformers.models.clip.modeling_tf_clip.TFCLIPOutputtuple(tf.Tensor)

参数

  • input_ids (tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    可以使用AutoTokenizer获取索引。详情请参见PreTrainedTokenizer.encode()PreTrainedTokenizer.call()

    什么是输入ID?

  • attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    什么是注意力掩码?

  • position_ids (tf.Tensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    什么是位置ID?

  • pixel_values (tf.Tensor of shape (batch_size, num_channels, height, width)) — 像素值。默认情况下,如果您提供了填充,它将被忽略。像素值可以使用图像处理器获得(例如,如果您使用ViT作为编码器,您应该使用AutoImageProcessor)。详情请参见 ViTImageProcessor.call().
  • return_loss (bool, optional) — 是否返回对比损失。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个ModelOutput而不是一个普通的元组。

返回

transformers.models.clip.modeling_tf_clip.TFCLIPOutputtuple(tf.Tensor)

一个 transformers.models.clip.modeling_tf_clip.TFCLIPOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(VisionTextDualEncoderConfig)和输入的各种元素。

  • loss (tf.Tensor 形状为 (1,)可选,当 return_lossTrue 时返回) — 图像-文本相似性的对比损失。
  • logits_per_image:(tf.Tensor 形状为 (image_batch_size, text_batch_size)) — image_embedstext_embeds 之间的缩放点积分数。这表示图像-文本相似性分数。
  • logits_per_text:(tf.Tensor 形状为 (text_batch_size, image_batch_size)) — text_embedsimage_embeds 之间的缩放点积分数。这表示文本-图像相似性分数。
  • text_embeds(tf.Tensor 形状为 (batch_size, output_dim) — 通过将投影层应用于 TFCLIPTextModel 的池化输出获得的文本嵌入。
  • image_embeds(tf.Tensor 形状为 (batch_size, output_dim) — 通过将投影层应用于 TFCLIPVisionModel 的池化输出获得的图像嵌入。
  • text_model_output(~modeling_tf_utils.TFBaseModelOutputWithPooling): TFCLIPTextModel 的输出。
  • vision_model_output(~modeling_tf_utils.TFBaseModelOutputWithPooling): TFCLIPVisionModel 的输出。

TFVisionTextDualEncoderModel 的前向方法,重写了 __call__ 特殊方法。

尽管前向传递的配方需要在此函数内定义,但之后应该调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from PIL import Image
>>> import requests
>>> from transformers import (
...     TFVisionTextDualEncoderModel,
...     VisionTextDualEncoderProcessor,
...     AutoImageProcessor,
...     AutoTokenizer,
... )

>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
>>> model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
...     "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )

>>> # contrastive training
>>> urls = [
...     "http://images.cocodataset.org/val2017/000000039769.jpg",
...     "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg",
... ]
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls]
>>> inputs = processor(
...     text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="np", padding=True
... )
>>> outputs = model(
...     input_ids=inputs.input_ids,
...     attention_mask=inputs.attention_mask,
...     pixel_values=inputs.pixel_values,
...     return_loss=True,
... )
>>> loss, logits_per_image = outputs.loss, outputs.logits_per_image  # this is the image-text similarity score

>>> # save and load from pretrained
>>> model.save_pretrained("vit-bert")
>>> model = TFVisionTextDualEncoderModel.from_pretrained("vit-bert")

>>> # inference
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
>>> probs = tf.nn.softmax(logits_per_image, axis=1)  # we can take the softmax to get the label probabilities
< > Update on GitHub