pandas.Series.sparse.to_coo#
- Series.sparse.to_coo(row_levels=(0,), column_levels=(1,), sort_labels=False)[源代码]#
从具有 MultiIndex 的 Series 创建一个 scipy.sparse.coo_matrix。
使用 row_levels 和 column_levels 分别确定行和列的坐标。row_levels 和 column_levels 是级别名称(标签)或级别编号。{row_levels, column_levels} 必须是 MultiIndex 级别名称(或编号)的一个分区。
- 参数:
- row_levelstuple/list
- column_levelstuple/list
- sort_labelsbool, 默认 False
在形成稀疏矩阵之前对行和列标签进行排序。当 row_levels 和/或 column_levels 引用单个级别时,设置为 True 以加快执行速度。
- 返回:
- yscipy.sparse.coo_matrix
- 行列表(行标签)
- 列列表(列标签)
例子
>>> s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) >>> s.index = pd.MultiIndex.from_tuples( ... [ ... (1, 2, "a", 0), ... (1, 2, "a", 1), ... (1, 1, "b", 0), ... (1, 1, "b", 1), ... (2, 1, "b", 0), ... (2, 1, "b", 1), ... ], ... names=["A", "B", "C", "D"], ... ) >>> s A B C D 1 2 a 0 3.0 1 NaN 1 b 0 1.0 1 3.0 2 1 b 0 NaN 1 NaN dtype: float64
>>> ss = s.astype("Sparse") >>> ss A B C D 1 2 a 0 3.0 1 NaN 1 b 0 1.0 1 3.0 2 1 b 0 NaN 1 NaN dtype: Sparse[float64, nan]
>>> A, rows, columns = ss.sparse.to_coo( ... row_levels=["A", "B"], column_levels=["C", "D"], sort_labels=True ... ) >>> A <COOrdinate sparse matrix of dtype 'float64' with 3 stored elements and shape (3, 4)> >>> A.todense() matrix([[0., 0., 1., 3.], [3., 0., 0., 0.], [0., 0., 0., 0.]])
>>> rows [(1, 1), (1, 2), (2, 1)] >>> columns [('a', 0), ('a', 1), ('b', 0), ('b', 1)]