cluster_optics_dbscan#
- sklearn.cluster.cluster_optics_dbscan(*, reachability, core_distances, ordering, eps)#
执行DBSCAN提取以适应任意epsilon。
提取簇的操作在线性时间内运行。请注意,这将生成与使用类似设置和
eps
的:class:~sklearn.cluster.DBSCAN
接近的labels_
,前提是eps
接近max_eps
。- Parameters:
- reachabilityndarray of shape (n_samples,)
由OPTICS计算的可及性距离(
reachability_
)。- core_distancesndarray of shape (n_samples,)
点成为核心的距离(
core_distances_
)。- orderingndarray of shape (n_samples,)
OPTICS排序点索引(
ordering_
)。- epsfloat
DBSCAN的
eps
参数。必须设置为<max_eps
。如果eps
和max_eps
接近,结果将接近DBSCAN算法。
- Returns:
- labels_array of shape (n_samples,)
估计的标签。
Examples
>>> import numpy as np >>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph >>> X = np.array([[1, 2], [2, 5], [3, 6], ... [8, 7], [8, 8], [7, 3]]) >>> ordering, core_distances, reachability, predecessor = compute_optics_graph( ... X, ... min_samples=2, ... max_eps=np.inf, ... metric="minkowski", ... p=2, ... metric_params=None, ... algorithm="auto", ... leaf_size=30, ... n_jobs=None, ... ) >>> eps = 4.5 >>> labels = cluster_optics_dbscan( ... reachability=reachability, ... core_distances=core_distances, ... ordering=ordering, ... eps=eps, ... ) >>> labels array([0, 0, 0, 1, 1, 1])
Gallery examples#
OPTICS聚类算法示例