Kernel#
- class sklearn.gaussian_process.kernels.Kernel#
基类用于所有核函数。
Added in version 0.18.
Examples
>>> from sklearn.gaussian_process.kernels import Kernel, RBF >>> import numpy as np >>> class CustomKernel(Kernel): ... def __init__(self, length_scale=1.0): ... self.length_scale = length_scale ... def __call__(self, X, Y=None): ... if Y is None: ... Y = X ... return np.inner(X, X if Y is None else Y) ** 2 ... def diag(self, X): ... return np.ones(X.shape[0]) ... def is_stationary(self): ... return True >>> kernel = CustomKernel(length_scale=2.0) >>> X = np.array([[1, 2], [3, 4]]) >>> print(kernel(X)) [[ 25 121] [121 625]]
- abstract __call__(X, Y=None, eval_gradient=False)#
评估核函数。
- property bounds#
返回对theta进行对数变换后的边界。
- Returns:
- boundsndarray of shape (n_dims, 2)
核函数超参数theta的对数变换边界
- clone_with_theta(theta)#
返回具有给定超参数 theta 的自身克隆。
- Parameters:
- thetandarray of shape (n_dims,)
超参数
- abstract diag(X)#
返回核 k(X, X) 的对角线。
此方法的结果与 np.diag(self(X)) 相同;然而, 由于只计算对角线,因此可以更高效地进行评估。
- Parameters:
- X形状为 (n_samples,) 的类数组对象
返回核 k(X, Y) 的左参数
- Returns:
- K_diag形状为 (n_samples_X,) 的 ndarray
核 k(X, X) 的对角线
- get_params(deep=True)#
获取此内核的参数。
- Parameters:
- deepbool, 默认=True
如果为True,将返回此估计器及其包含的作为估计器的子对象的参数。
- Returns:
- paramsdict
参数名称映射到它们的值。
- property hyperparameters#
返回所有超参数规范的列表。
- abstract is_stationary()#
返回内核是否是平稳的。
- property n_dims#
返回内核的非固定超参数的数量。
- property requires_vector_input#
返回内核是否定义在固定长度的特征向量或通用对象上。默认为True以保持向后兼容性。
- set_params(**params)#
设置此内核的参数。
该方法适用于简单内核和嵌套内核。后者具有形式为
<component>__<parameter>
的参数,因此可以更新嵌套对象的每个组件。- Returns:
- self
- property theta#
返回非固定超参数的(扁平化、对数变换后的)值。
注意,theta通常是内核超参数的对数变换值,因为这种搜索空间的表示更适合超参数搜索,例如长度尺度等超参数自然存在于对数尺度上。
- Returns:
- thetandarray of shape (n_dims,)
内核的非固定、对数变换后的超参数
Gallery examples#
离散数据结构上的高斯过程