Examples#
This is the gallery of examples that showcase how scikit-learn can be used. Some examples demonstrate the use of the API in general and some demonstrate specific applications in tutorial form. Also check out our user guide for more detailed illustrations.
Release Highlights#
These examples illustrate the main features of the releases of scikit-learn.
Biclustering#
Examples concerning biclustering techniques.
Calibration#
Examples illustrating the calibration of predicted probabilities of classifiers.
Classification#
General examples about classification algorithms.
用于分类的普通、Ledoit-Wolf 和 OAS 线性判别分析
Clustering#
Examples concerning the sklearn.cluster
module.
K-Means 和 MiniBatchKMeans 聚类算法的比较
Covariance estimation#
Examples concerning the sklearn.covariance
module.
收缩协方差估计:LedoitWolf vs OAS 和最大似然
Cross decomposition#
Examples concerning the sklearn.cross_decomposition
module.
Dataset examples#
Examples concerning the sklearn.datasets
module.
Decision Trees#
Examples concerning the sklearn.tree
module.
Decomposition#
Examples concerning the sklearn.decomposition
module.
sphx_glr_auto_examples_decomposition_plot_ica_vs_pca.py
Developing Estimators#
Examples concerning the development of Custom Estimator.
__sklearn_is_fitted__ 作为开发者 API
Ensemble methods#
Examples concerning the sklearn.ensemble
module.
sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py
Examples based on real world datasets#
Applications to real world problems with some medium sized datasets or interactive user interface.
Feature Selection#
Examples concerning the sklearn.feature_selection
module.
Gaussian Mixture Models#
Examples concerning the sklearn.mixture
module.
Gaussian Process for Machine Learning#
Examples concerning the sklearn.gaussian_process
module.
使用高斯过程回归(GPR)对莫纳罗亚数据集的CO2水平进行预测
Generalized Linear Models#
Examples concerning the sklearn.linear_model
module.
Inspection#
Examples related to the sklearn.inspection
module.
Kernel Approximation#
Examples concerning the sklearn.kernel_approximation
module.
Manifold learning#
Examples concerning the sklearn.manifold
module.
Miscellaneous#
Miscellaneous and introductory examples for scikit-learn.
使用随机投影进行嵌入的Johnson-Lindenstrauss界限
Missing Value Imputation#
Examples concerning the sklearn.impute
module.
Model Selection#
Examples related to the sklearn.model_selection
module.
sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py
Multiclass methods#
Examples concerning the sklearn.multiclass
module.
Multioutput methods#
Examples concerning the sklearn.multioutput
module.
Nearest Neighbors#
Examples concerning the sklearn.neighbors
module.
Neural Networks#
Examples concerning the sklearn.neural_network
module.
Pipelines and composite estimators#
Examples of how to compose transformers and pipelines from other estimators. See the User Guide.
Preprocessing#
Examples concerning the sklearn.preprocessing
module.
Semi Supervised Classification#
Examples concerning the sklearn.semi_supervised
module.
Support Vector Machines#
Examples concerning the sklearn.svm
module.
Tutorial exercises#
Exercises for the tutorials
sphx_glr_auto_examples_exercises_plot_iris_exercise.py
Working with text documents#
Examples concerning the sklearn.feature_extraction.text
module.