物种分布建模#

建模物种的地理分布是保护生物学中的一个重要问题。在这个例子中,我们根据过去的观察和14个环境变量来建模两种南美洲哺乳动物的地理分布。由于我们只有正样本(没有不成功的观察),我们将这个问题视为一个密度估计问题,并使用 OneClassSVM 作为我们的建模工具。数据集由Phillips等人(2006)提供。如果可用,示例使用 basemap 来绘制南美洲的海岸线和国家边界。

这两种物种是:

参考文献#

bradypus variegatus, microryzomys minutus
________________________________________________________________________________
Modeling distribution of species 'bradypus variegatus'
 - fit OneClassSVM ... done.
 - plot coastlines from coverage
 - predict species distribution

 Area under the ROC curve : 0.868443
________________________________________________________________________________
Modeling distribution of species 'microryzomys minutus'
 - fit OneClassSVM ... done.
 - plot coastlines from coverage
 - predict species distribution

 Area under the ROC curve : 0.993919

time elapsed: 3.00s

# 作者:scikit-learn 开发者
# SPDX-License-Identifier: BSD-3-Clause

from time import time

import matplotlib.pyplot as plt
import numpy as np

from sklearn import metrics, svm
from sklearn.datasets import fetch_species_distributions
from sklearn.utils import Bunch

# 如果 basemap 可用,我们将使用它。
# 否则,我们稍后将即兴处理……
try:
    from mpl_toolkits.basemap import Basemap

    basemap = True
except ImportError:
    basemap = False


def construct_grids(batch):
    """从批处理对象构建地图网格

Parameters
----------
batch : 批处理对象
    由 :func:`fetch_species_distributions` 返回的对象

返回
-------
(xgrid, ygrid) : 一维数组
    与 batch.coverages 中的值对应的网格
"""
    # 角落单元的 x,y 坐标
    xmin = batch.x_left_lower_corner + batch.grid_size
    xmax = xmin + (batch.Nx * batch.grid_size)
    ymin = batch.y_left_lower_corner + batch.grid_size
    ymax = ymin + (batch.Ny * batch.grid_size)

    # 网格单元的 x 坐标
    xgrid = np.arange(xmin, xmax, batch.grid_size)
    # 网格单元的 y 坐标
    ygrid = np.arange(ymin, ymax, batch.grid_size)

    return (xgrid, ygrid)


def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
    """创建一个包含特定生物信息的集合

这将使用测试/训练记录数组来提取特定物种名称的数据。
"""
    bunch = Bunch(name=" ".join(species_name.split("_")[:2]))
    species_name = species_name.encode("ascii")
    points = dict(test=test, train=train)

    for label, pts in points.items():
        # 选择与所需物种相关的点
        pts = pts[pts["species"] == species_name]
        bunch["pts_%s" % label] = pts

        # 确定每个训练和测试点的覆盖值
        ix = np.searchsorted(xgrid, pts["dd long"])
        iy = np.searchsorted(ygrid, pts["dd lat"])
        bunch["cov_%s" % label] = coverages[:, -iy, ix].T

    return bunch


def plot_species_distribution(
    species=("bradypus_variegatus_0", "microryzomys_minutus_0")
):
    """
        绘制物种分布图。
    """
    if len(species) > 2:
        print(
            "Note: when more than two species are provided,"
            " only the first two will be used"
        )

    t0 = time()

    # 加载压缩数据
    data = fetch_species_distributions()

    # 设置数据网格
    xgrid, ygrid = construct_grids(data)

    # x,y坐标系中的网格
    X, Y = np.meshgrid(xgrid, ygrid[::-1])

    # 为每个物种创建一组
    BV_bunch = create_species_bunch(
        species[0], data.train, data.test, data.coverages, xgrid, ygrid
    )
    MM_bunch = create_species_bunch(
        species[1], data.train, data.test, data.coverages, xgrid, ygrid
    )

    # 评估用背景点(网格坐标)
    np.random.seed(13)
    background_points = np.c_[
        np.random.randint(low=0, high=data.Ny, size=10000),
        np.random.randint(low=0, high=data.Nx, size=10000),
    ].T

    # 我们将利用coverages[6]在所有陆地区域都有测量值这一事实。这将帮助我们在陆地和水域之间做出判断。
    land_reference = data.coverages[6]

    # 拟合、预测和绘制每个物种的图表。
    for i, species in enumerate([BV_bunch, MM_bunch]):
        print("_" * 80)
        print("Modeling distribution of species '%s'" % species.name)

        # 标准化特征
        mean = species.cov_train.mean(axis=0)
        std = species.cov_train.std(axis=0)
        train_cover_std = (species.cov_train - mean) / std

        # Fit OneClassSVM
        print(" - fit OneClassSVM ... ", end="")
        clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
        clf.fit(train_cover_std)
        print("done.")

        # 绘制南美洲地图
        plt.subplot(1, 2, i + 1)
        if basemap:
            print(" - plot coastlines using basemap")
            m = Basemap(
                projection="cyl",
                llcrnrlat=Y.min(),
                urcrnrlat=Y.max(),
                llcrnrlon=X.min(),
                urcrnrlon=X.max(),
                resolution="c",
            )
            m.drawcoastlines()
            m.drawcountries()
        else:
            print(" - plot coastlines from coverage")
            plt.contour(
                X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid"
            )
            plt.xticks([])
            plt.yticks([])

        print(" - predict species distribution")

        # 使用训练数据预测物种分布
        Z = np.ones((data.Ny, data.Nx), dtype=np.float64)

        # 我们只会预测陆地上的点。
        idx = np.where(land_reference > -9999)
        coverages_land = data.coverages[:, idx[0], idx[1]].T

        pred = clf.decision_function((coverages_land - mean) / std)
        Z *= pred.min()
        Z[idx[0], idx[1]] = pred

        levels = np.linspace(Z.min(), Z.max(), 25)
        Z[land_reference == -9999] = -9999

        # 绘制预测的等高线图
        plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)
        plt.colorbar(format="%.2f")

        # 散点训练/测试点
        plt.scatter(
            species.pts_train["dd long"],
            species.pts_train["dd lat"],
            s=2**2,
            c="black",
            marker="^",
            label="train",
        )
        plt.scatter(
            species.pts_test["dd long"],
            species.pts_test["dd lat"],
            s=2**2,
            c="black",
            marker="x",
            label="test",
        )
        plt.legend()
        plt.title(species.name)
        plt.axis("equal")

        # 计算相对于背景点的AUC
        pred_background = Z[background_points[0], background_points[1]]
        pred_test = clf.decision_function((species.cov_test - mean) / std)
        scores = np.r_[pred_test, pred_background]
        y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
        fpr, tpr, thresholds = metrics.roc_curve(y, scores)
        roc_auc = metrics.auc(fpr, tpr)
        plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
        print("\n Area under the ROC curve : %f" % roc_auc)

    print("\ntime elapsed: %.2fs" % (time() - t0))


plot_species_distribution()
plt.show()

Total running time of the script: (0 minutes 3.081 seconds)

Related examples

物种分布的核密度估计

物种分布的核密度估计

在鸢尾花数据集上绘制多类SGD

在鸢尾花数据集上绘制多类SGD

使用局部离群因子(LOF)进行新颖性检测

使用局部离群因子(LOF)进行新颖性检测

随机梯度下降:加权样本

随机梯度下降:加权样本

Gallery generated by Sphinx-Gallery