预测延迟#

这是一个展示各种scikit-learn估计器预测延迟的示例。

目标是测量在批量或原子(即一个接一个)模式下进行预测时可以预期的延迟。

图表以箱线图的形式表示预测延迟的分布。

# 作者:scikit-learn 开发者
# SPDX许可证标识符:BSD-3-Clause

import gc
import time
from collections import defaultdict

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge, SGDRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.utils import shuffle


def _not_in_sphinx():
    # 检测我们是否由sphinx构建器运行的黑客方法
    return "__file__" in globals()

基准测试和绘图辅助函数#

def atomic_benchmark_estimator(estimator, X_test, verbose=False):
    """测量每个实例的运行时间预测。"""
    n_instances = X_test.shape[0]
    runtimes = np.zeros(n_instances, dtype=float)
    for i in range(n_instances):
        instance = X_test[[i], :]
        start = time.time()
        estimator.predict(instance)
        runtimes[i] = time.time() - start
    if verbose:
        print(
            "atomic_benchmark runtimes:",
            min(runtimes),
            np.percentile(runtimes, 50),
            max(runtimes),
        )
    return runtimes


def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose):
    """测量整个输入的运行时间预测。"""
    n_instances = X_test.shape[0]
    runtimes = np.zeros(n_bulk_repeats, dtype=float)
    for i in range(n_bulk_repeats):
        start = time.time()
        estimator.predict(X_test)
        runtimes[i] = time.time() - start
    runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes)))
    if verbose:
        print(
            "bulk_benchmark runtimes:",
            min(runtimes),
            np.percentile(runtimes, 50),
            max(runtimes),
        )
    return runtimes


def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
    """测量预测在原子模式和批量模式下的运行时间。

Parameters
----------
estimator : 已经训练好的支持 `predict()` 的估计器
X_test : 测试输入
n_bulk_repeats : 评估批量模式时重复的次数

Returns
-------
atomic_runtimes, bulk_runtimes : 一对 `np.array` ,包含以秒为单位的运行时间。
"""
    atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
    bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose)
    return atomic_runtimes, bulk_runtimes


def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False):
    """生成具有给定参数的回归数据集。"""
    if verbose:
        print("generating dataset...")

    X, y, coef = make_regression(
        n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True
    )

    random_seed = 13
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, train_size=n_train, test_size=n_test, random_state=random_seed
    )
    X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)

    X_scaler = StandardScaler()
    X_train = X_scaler.fit_transform(X_train)
    X_test = X_scaler.transform(X_test)

    y_scaler = StandardScaler()
    y_train = y_scaler.fit_transform(y_train[:, None])[:, 0]
    y_test = y_scaler.transform(y_test[:, None])[:, 0]

    gc.collect()
    if verbose:
        print("ok")
    return X_train, y_train, X_test, y_test


def boxplot_runtimes(runtimes, pred_type, configuration):
    """绘制一个包含预测运行时间箱线图的新 `Figure` 。

Parameters
----------
runtimes : 以微秒为单位的延迟 `np.array` 列表
cls_names : 生成运行时间的估计器类名列表
pred_type : 'bulk' 或 'atomic'
"""

    fig, ax1 = plt.subplots(figsize=(10, 6))
    bp = plt.boxplot(
        runtimes,
    )

    cls_infos = [
        "%s\n(%d %s)"
        % (
            estimator_conf["name"],
            estimator_conf["complexity_computer"](estimator_conf["instance"]),
            estimator_conf["complexity_label"],
        )
        for estimator_conf in configuration["estimators"]
    ]
    plt.setp(ax1, xticklabels=cls_infos)
    plt.setp(bp["boxes"], color="black")
    plt.setp(bp["whiskers"], color="black")
    plt.setp(bp["fliers"], color="red", marker="+")

    ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)

    ax1.set_axisbelow(True)
    ax1.set_title(
        "Prediction Time per Instance - %s, %d feats."
        % (pred_type.capitalize(), configuration["n_features"])
    )
    ax1.set_ylabel("Prediction Time (us)")

    plt.show()


def benchmark(configuration):
    """运行整个基准测试。"""
    X_train, y_train, X_test, y_test = generate_dataset(
        configuration["n_train"], configuration["n_test"], configuration["n_features"]
    )

    stats = {}
    for estimator_conf in configuration["estimators"]:
        print("Benchmarking", estimator_conf["instance"])
        estimator_conf["instance"].fit(X_train, y_train)
        gc.collect()
        a, b = benchmark_estimator(estimator_conf["instance"], X_test)
        stats[estimator_conf["name"]] = {"atomic": a, "bulk": b}

    cls_names = [
        estimator_conf["name"] for estimator_conf in configuration["estimators"]
    ]
    runtimes = [1e6 * stats[clf_name]["atomic"] for clf_name in cls_names]
    boxplot_runtimes(runtimes, "atomic", configuration)
    runtimes = [1e6 * stats[clf_name]["bulk"] for clf_name in cls_names]
    boxplot_runtimes(runtimes, "bulk (%d)" % configuration["n_test"], configuration)


def n_feature_influence(estimators, n_train, n_test, n_features, percentile):
    """估计特征数量对预测时间的影响。

Parameters
----------

estimators : 用于基准测试的(名称(str),估计器)字典
n_train : 训练实例的数量(int)
n_test : 测试实例的数量(int)
n_features : 要测试的特征空间维度列表(int)
percentile : 测量速度的百分位数(int [0-100])

Returns:
--------

percentiles : 字典(估计器名称,
                   字典(特征数量,百分位性能(微秒)))
"""
    percentiles = defaultdict(defaultdict)
    for n in n_features:
        print("benchmarking with %d features" % n)
        X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
        for cls_name, estimator in estimators.items():
            estimator.fit(X_train, y_train)
            gc.collect()
            runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
            percentiles[cls_name][n] = 1e6 * np.percentile(runtimes, percentile)
    return percentiles


def plot_n_features_influence(percentiles, percentile):
    fig, ax1 = plt.subplots(figsize=(10, 6))
    colors = ["r", "g", "b"]
    for i, cls_name in enumerate(percentiles.keys()):
        x = np.array(sorted(percentiles[cls_name].keys()))
        y = np.array([percentiles[cls_name][n] for n in x])
        plt.plot(
            x,
            y,
            color=colors[i],
        )
    ax1.yaxis.grid(True, linestyle="-", which="major", color="lightgrey", alpha=0.5)
    ax1.set_axisbelow(True)
    ax1.set_title("Evolution of Prediction Time with #Features")
    ax1.set_xlabel("#Features")
    ax1.set_ylabel("Prediction Time at %d%%-ile (us)" % percentile)
    plt.show()


def benchmark_throughputs(configuration, duration_secs=0.1):
    """不同估计器的基准吞吐量。"""
    X_train, y_train, X_test, y_test = generate_dataset(
        configuration["n_train"], configuration["n_test"], configuration["n_features"]
    )
    throughputs = dict()
    for estimator_config in configuration["estimators"]:
        estimator_config["instance"].fit(X_train, y_train)
        start_time = time.time()
        n_predictions = 0
        while (time.time() - start_time) < duration_secs:
            estimator_config["instance"].predict(X_test[[0]])
            n_predictions += 1
        throughputs[estimator_config["name"]] = n_predictions / duration_secs
    return throughputs


def plot_benchmark_throughput(throughputs, configuration):
    fig, ax = plt.subplots(figsize=(10, 6))
    colors = ["r", "g", "b"]
    cls_infos = [
        "%s\n(%d %s)"
        % (
            estimator_conf["name"],
            estimator_conf["complexity_computer"](estimator_conf["instance"]),
            estimator_conf["complexity_label"],
        )
        for estimator_conf in configuration["estimators"]
    ]
    cls_values = [
        throughputs[estimator_conf["name"]]
        for estimator_conf in configuration["estimators"]
    ]
    plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors)
    ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs)))
    ax.set_xticklabels(cls_infos, fontsize=10)
    ymax = max(cls_values) * 1.2
    ax.set_ylim((0, ymax))
    ax.set_ylabel("Throughput (predictions/sec)")
    ax.set_title(
        "Prediction Throughput for different estimators (%d features)"
        % configuration["n_features"]
    )
    plt.show()

基准测试各种回归器的大量/原子预测速度#

configuration = {
    "n_train": int(1e3),
    "n_test": int(1e2),
    "n_features": int(1e2),
    "estimators": [
        {
            "name": "Linear Model",
            "instance": SGDRegressor(
                penalty="elasticnet", alpha=0.01, l1_ratio=0.25, tol=1e-4
            ),
            "complexity_label": "non-zero coefficients",
            "complexity_computer": lambda clf: np.count_nonzero(clf.coef_),
        },
        {
            "name": "RandomForest",
            "instance": RandomForestRegressor(),
            "complexity_label": "estimators",
            "complexity_computer": lambda clf: clf.n_estimators,
        },
        {
            "name": "SVR",
            "instance": SVR(kernel="rbf"),
            "complexity_label": "support vectors",
            "complexity_computer": lambda clf: len(clf.support_vectors_),
        },
    ],
}
benchmark(configuration)
  • Prediction Time per Instance - Atomic, 100 feats.
  • Prediction Time per Instance - Bulk (100), 100 feats.
Benchmarking SGDRegressor(alpha=0.01, l1_ratio=0.25, penalty='elasticnet', tol=0.0001)
Benchmarking RandomForestRegressor()
Benchmarking SVR()

基准测试 n_features 对预测速度的影响#

percentile = 90
percentiles = n_feature_influence(
    {"ridge": Ridge()},
    configuration["n_train"],
    configuration["n_test"],
    [100, 250, 500],
    percentile,
)
plot_n_features_influence(percentiles, percentile)
Evolution of Prediction Time with #Features
benchmarking with 100 features
benchmarking with 250 features
benchmarking with 500 features

基准吞吐量#

throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)
Prediction Throughput for different estimators (100 features)

Total running time of the script: (0 minutes 28.432 seconds)

Related examples

SVM-Anova:带有单变量特征选择的SVM

SVM-Anova:带有单变量特征选择的SVM

变分贝叶斯高斯混合模型的浓度先验类型分析

变分贝叶斯高斯混合模型的浓度先验类型分析

单一估计器与袋装法:偏差-方差分解

单一估计器与袋装法:偏差-方差分解

文本文档的外存分类

文本文档的外存分类

Gallery generated by Sphinx-Gallery