Ledoit-Wolf 与 OAS 估计#

通常的协方差最大似然估计可以通过收缩进行正则化。Ledoit 和 Wolf 提出了一个计算渐近最优收缩参数(最小化 MSE 标准)的闭合公式,从而得到了 Ledoit-Wolf 协方差估计。

Chen 等人提出了对 Ledoit-Wolf 收缩参数的改进,即 OAS 系数,在假设数据为高斯分布的情况下,其收敛性显著更好。

这个例子借鉴了 Chen 的出版物 [1],展示了使用高斯分布数据时 LW 和 OAS 方法估计的 MSE 的比较。

[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen 等人,IEEE 信号处理汇刊,2010 年 10 月,第 58 卷,第 10 期。

import matplotlib.pyplot as plt
import numpy as np
from scipy.linalg import cholesky, toeplitz

from sklearn.covariance import OAS, LedoitWolf

np.random.seed(0)
n_features = 100
# 模拟协方差矩阵(AR(1)过程)
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)

n_samples_range = np.arange(6, 31, 1)
repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
    for j in range(repeat):
        X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

        lw = LedoitWolf(store_precision=False, assume_centered=True)
        lw.fit(X)
        lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
        lw_shrinkage[i, j] = lw.shrinkage_

        oa = OAS(store_precision=False, assume_centered=True)
        oa.fit(X)
        oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
        oa_shrinkage[i, j] = oa.shrinkage_

# plot MSE
plt.subplot(2, 1, 1)
plt.errorbar(
    n_samples_range,
    lw_mse.mean(1),
    yerr=lw_mse.std(1),
    label="Ledoit-Wolf",
    color="navy",
    lw=2,
)
plt.errorbar(
    n_samples_range,
    oa_mse.mean(1),
    yerr=oa_mse.std(1),
    label="OAS",
    color="darkorange",
    lw=2,
)
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)

# 绘制收缩系数
plt.subplot(2, 1, 2)
plt.errorbar(
    n_samples_range,
    lw_shrinkage.mean(1),
    yerr=lw_shrinkage.std(1),
    label="Ledoit-Wolf",
    color="navy",
    lw=2,
)
plt.errorbar(
    n_samples_range,
    oa_shrinkage.mean(1),
    yerr=oa_shrinkage.std(1),
    label="OAS",
    color="darkorange",
    lw=2,
)
plt.xlabel("n_samples")
plt.ylabel("Shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1.0 + (plt.ylim()[1] - plt.ylim()[0]) / 10.0)
plt.xlim(5, 31)

plt.show()
Comparison of covariance estimators

Total running time of the script: (0 minutes 1.190 seconds)

Related examples

收缩协方差估计:LedoitWolf vs OAS 和最大似然

收缩协方差估计:LedoitWolf vs OAS 和最大似然

用于分类的普通、Ledoit-Wolf 和 OAS 线性判别分析

用于分类的普通、Ledoit-Wolf 和 OAS 线性判别分析

稳健与经验协方差估计

稳健与经验协方差估计

使用随机投影进行嵌入的Johnson-Lindenstrauss界限

使用随机投影进行嵌入的Johnson-Lindenstrauss界限

Gallery generated by Sphinx-Gallery