Note
Go to the end to download the full example code. or to run this example in your browser via Binder
SGD:最大间隔分离超平面#
使用线性支持向量机分类器在一个可分的双类数据集中绘制最大间隔分离超平面,该分类器使用随机梯度下降(SGD)进行训练。
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
from sklearn.linear_model import SGDClassifier
# 我们创建50个可分离点
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)
# 拟合模型
clf = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200)
clf.fit(X, Y)
# 绘制直线、点和最近的向量到平面
xx = np.linspace(-1, 5, 10)
yy = np.linspace(-1, 5, 10)
X1, X2 = np.meshgrid(xx, yy)
Z = np.empty(X1.shape)
for (i, j), val in np.ndenumerate(X1):
x1 = val
x2 = X2[i, j]
p = clf.decision_function([[x1, x2]])
Z[i, j] = p[0]
levels = [-1.0, 0.0, 1.0]
linestyles = ["dashed", "solid", "dashed"]
colors = "k"
plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolor="black", s=20)
plt.axis("tight")
plt.show()
Total running time of the script: (0 minutes 0.032 seconds)
Related examples
高斯过程分类 (GPC) 的等概率线
绘制随机生成的分类数据集
二分类AdaBoost
随机梯度下降:加权样本