K-Means 和 MiniBatchKMeans 聚类算法的比较#

我们想要比较 MiniBatchKMeans 和 KMeans 的性能: MiniBatchKMeans 更快,但会产生略有不同的结果(参见 Mini Batch K-Means )。

我们将首先使用 KMeans 对一组数据进行聚类,然后使用 MiniBatchKMeans 进行聚类,并绘制结果。 我们还将绘制在两个算法之间标签不同的点。

生成数据#

我们首先生成要进行聚类的数据斑点。

import numpy as np

from sklearn.datasets import make_blobs

np.random.seed(0)

batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)

计算KMeans聚类#

import time

from sklearn.cluster import KMeans

k_means = KMeans(init="k-means++", n_clusters=3, n_init=10)
t0 = time.time()
k_means.fit(X)
t_batch = time.time() - t0

计算使用 MiniBatchKMeans 的聚类#

from sklearn.cluster import MiniBatchKMeans

mbk = MiniBatchKMeans(
    init="k-means++",
    n_clusters=3,
    batch_size=batch_size,
    n_init=10,
    max_no_improvement=10,
    verbose=0,
)
t0 = time.time()
mbk.fit(X)
t_mini_batch = time.time() - t0

在集群之间建立一致性#

我们希望 MiniBatchKMeans 和 KMeans 算法中的同一簇具有相同的颜色。让我们将每个簇中心与最近的一个配对。

from sklearn.metrics.pairwise import pairwise_distances_argmin

k_means_cluster_centers = k_means.cluster_centers_
order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_)
mbk_means_cluster_centers = mbk.cluster_centers_[order]

k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)
mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)

绘制结果#

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(8, 3))
fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)
colors = ["#4EACC5", "#FF9C34", "#4E9A06"]

# KMeans
ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):
    my_members = k_means_labels == k
    cluster_center = k_means_cluster_centers[k]
    ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".")
    ax.plot(
        cluster_center[0],
        cluster_center[1],
        "o",
        markerfacecolor=col,
        markeredgecolor="k",
        markersize=6,
    )
ax.set_title("KMeans")
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, "train time: %.2fs\ninertia: %f" % (t_batch, k_means.inertia_))

# MiniBatchKMeans
ax = fig.add_subplot(1, 3, 2)
for k, col in zip(range(n_clusters), colors):
    my_members = mbk_means_labels == k
    cluster_center = mbk_means_cluster_centers[k]
    ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".")
    ax.plot(
        cluster_center[0],
        cluster_center[1],
        "o",
        markerfacecolor=col,
        markeredgecolor="k",
        markersize=6,
    )
ax.set_title("MiniBatchKMeans")
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, "train time: %.2fs\ninertia: %f" % (t_mini_batch, mbk.inertia_))

# 将不同的数组初始化为全False
different = mbk_means_labels == 4
ax = fig.add_subplot(1, 3, 3)

for k in range(n_clusters):
    different += (k_means_labels == k) != (mbk_means_labels == k)

identical = np.logical_not(different)
ax.plot(X[identical, 0], X[identical, 1], "w", markerfacecolor="#bbbbbb", marker=".")
ax.plot(X[different, 0], X[different, 1], "w", markerfacecolor="m", marker=".")
ax.set_title("Difference")
ax.set_xticks(())
ax.set_yticks(())

plt.show()
KMeans, MiniBatchKMeans, Difference

Total running time of the script: (0 minutes 0.120 seconds)

Related examples

k-means 初始化影响的经验评估

k-means 初始化影响的经验评估

比较 BIRCH 和 MiniBatchKMeans

比较 BIRCH 和 MiniBatchKMeans

均值漂移聚类算法示例

均值漂移聚类算法示例

使用k-means聚类文本文档

使用k-means聚类文本文档

Gallery generated by Sphinx-Gallery