显示估计器和复杂的管道#

这个例子展示了显示估计器和管道的不同方法。

from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler

紧凑文本表示#

估计器在作为字符串显示时,只会显示已设置为非默认值的参数。这减少了视觉噪音,并使比较实例时更容易发现差异。

lr = LogisticRegression(penalty="l1")
print(lr)
LogisticRegression(penalty='l1')

丰富的HTML表示#

在笔记本中,估计器和管道将使用丰富的HTML表示。这对于总结管道和其他复合估计器的结构特别有用,并具有交互性以提供详细信息。点击下面的示例图像以展开管道元素。有关如何使用此功能,请参见 复合估计器的可视化

num_proc = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())

cat_proc = make_pipeline(
    SimpleImputer(strategy="constant", fill_value="missing"),
    OneHotEncoder(handle_unknown="ignore"),
)

preprocessor = make_column_transformer(
    (num_proc, ("feat1", "feat3")), (cat_proc, ("feat0", "feat2"))
)

clf = make_pipeline(preprocessor, LogisticRegression())
clf
Pipeline(steps=[('columntransformer',
                 ColumnTransformer(transformers=[('pipeline-1',
                                                  Pipeline(steps=[('simpleimputer',
                                                                   SimpleImputer(strategy='median')),
                                                                  ('standardscaler',
                                                                   StandardScaler())]),
                                                  ('feat1', 'feat3')),
                                                 ('pipeline-2',
                                                  Pipeline(steps=[('simpleimputer',
                                                                   SimpleImputer(fill_value='missing',
                                                                                 strategy='constant')),
                                                                  ('onehotencoder',
                                                                   OneHotEncoder(handle_unknown='ignore'))]),
                                                  ('feat0', 'feat2'))])),
                ('logisticregression', LogisticRegression())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


Total running time of the script: (0 minutes 0.012 seconds)

Related examples

显示流水线

显示流水线

使用堆叠方法结合预测器

使用堆叠方法结合预测器

scikit-learn 0.23 版本发布亮点

scikit-learn 0.23 版本发布亮点

带有混合类型的列转换器

带有混合类型的列转换器

Gallery generated by Sphinx-Gallery