Note
Go to the end to download the full example code. or to run this example in your browser via Binder
将数据映射到正态分布#
本示例演示了通过 PowerTransformer
使用 Box-Cox 和 Yeo-Johnson 变换
将各种分布的数据映射到正态分布。
在建模问题中,当需要同方差性和正态性时,幂变换是有用的。以下是 Box-Cox 和 Yeo-Johnson 应用于六种不同概率分布的示例:对数正态分布、卡方分布、韦伯分布、高斯分布、均匀分布和双峰分布。
请注意,当应用于某些数据集时,这些变换成功地将数据映射到正态分布,但对其他数据集则无效。这突显了在变换前后可视化数据的重要性。
还要注意,尽管 Box-Cox 似乎在对数正态分布和卡方分布上表现优于 Yeo-Johnson,但请记住 Box-Cox 不支持负值输入。
为了比较,我们还添加了 QuantileTransformer
的输出。只要有足够的训练样本(成千上万),它可以将任意分布强制转换为高斯分布。由于它是一种非参数方法,因此比参数方法(Box-Cox 和 Yeo-Johnson)更难解释。
在“小”数据集(少于几百个点)上,分位数变换器容易过拟合。因此,建议使用幂变换。
# 作者:scikit-learn 开发者
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PowerTransformer, QuantileTransformer
N_SAMPLES = 1000
FONT_SIZE = 6
BINS = 30
rng = np.random.RandomState(304)
bc = PowerTransformer(method="box-cox")
yj = PowerTransformer(method="yeo-johnson")
# n_quantiles 被设置为训练集大小而不是默认值,以避免此示例引发警告
qt = QuantileTransformer(
n_quantiles=500, output_distribution="normal", random_state=rng
)
size = (N_SAMPLES, 1)
# 对数正态分布
X_lognormal = rng.lognormal(size=size)
# 卡方分布
df = 3
X_chisq = rng.chisquare(df=df, size=size)
# 威布尔分布
a = 50
X_weibull = rng.weibull(a=a, size=size)
# 高斯分布
loc = 100
X_gaussian = rng.normal(loc=loc, size=size)
# 均匀分布
X_uniform = rng.uniform(low=0, high=1, size=size)
# 双峰分布
loc_a, loc_b = 100, 105
X_a, X_b = rng.normal(loc=loc_a, size=size), rng.normal(loc=loc_b, size=size)
X_bimodal = np.concatenate([X_a, X_b], axis=0)
# 创建图表
distributions = [
("Lognormal", X_lognormal),
("Chi-squared", X_chisq),
("Weibull", X_weibull),
("Gaussian", X_gaussian),
("Uniform", X_uniform),
("Bimodal", X_bimodal),
]
colors = ["#D81B60", "#0188FF", "#FFC107", "#B7A2FF", "#000000", "#2EC5AC"]
fig, axes = plt.subplots(nrows=8, ncols=3, figsize=plt.figaspect(2))
axes = axes.flatten()
axes_idxs = [
(0, 3, 6, 9),
(1, 4, 7, 10),
(2, 5, 8, 11),
(12, 15, 18, 21),
(13, 16, 19, 22),
(14, 17, 20, 23),
]
axes_list = [(axes[i], axes[j], axes[k], axes[l]) for (i, j, k, l) in axes_idxs]
for distribution, color, axes in zip(distributions, colors, axes_list):
name, X = distribution
X_train, X_test = train_test_split(X, test_size=0.5)
# 执行幂变换和分位数变换
X_trans_bc = bc.fit(X_train).transform(X_test)
lmbda_bc = round(bc.lambdas_[0], 2)
X_trans_yj = yj.fit(X_train).transform(X_test)
lmbda_yj = round(yj.lambdas_[0], 2)
X_trans_qt = qt.fit(X_train).transform(X_test)
ax_original, ax_bc, ax_yj, ax_qt = axes
ax_original.hist(X_train, color=color, bins=BINS)
ax_original.set_title(name, fontsize=FONT_SIZE)
ax_original.tick_params(axis="both", which="major", labelsize=FONT_SIZE)
for ax, X_trans, meth_name, lmbda in zip(
(ax_bc, ax_yj, ax_qt),
(X_trans_bc, X_trans_yj, X_trans_qt),
("Box-Cox", "Yeo-Johnson", "Quantile transform"),
(lmbda_bc, lmbda_yj, None),
):
ax.hist(X_trans, color=color, bins=BINS)
title = "After {}".format(meth_name)
if lmbda is not None:
title += "\n$\\lambda$ = {}".format(lmbda)
ax.set_title(title, fontsize=FONT_SIZE)
ax.tick_params(axis="both", which="major", labelsize=FONT_SIZE)
ax.set_xlim([-3.5, 3.5])
plt.tight_layout()
plt.show()
Total running time of the script: (0 minutes 0.736 seconds)
Related examples
比较不同缩放器对含有异常值的数据的影响
梯度提升中的提前停止
使用贝叶斯岭回归进行曲线拟合
缩放SVC的正则化参数