绘制在鸢尾花数据集上训练的决策树的决策边界#

绘制在鸢尾花数据集的特征对上训练的决策树的决策边界。

有关估计器的更多信息,请参见 决策树

对于每对鸢尾花特征,决策树通过从训练样本中推断出的简单阈值规则组合来学习决策边界。

我们还展示了基于所有特征构建的模型的树结构。

首先加载scikit-learn附带的Iris数据集副本:

from sklearn.datasets import load_iris

iris = load_iris()

显示在所有特征对上训练的树的决策函数。

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_iris
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.tree import DecisionTreeClassifier

# Parameters
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02


for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]):
    # 我们只取两个对应的特征
    X = iris.data[:, pair]
    y = iris.target

    # Train
    clf = DecisionTreeClassifier().fit(X, y)

    # Plot the decision boundary
    ax = plt.subplot(2, 3, pairidx + 1)
    plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
    DecisionBoundaryDisplay.from_estimator(
        clf,
        X,
        cmap=plt.cm.RdYlBu,
        response_method="predict",
        ax=ax,
        xlabel=iris.feature_names[pair[0]],
        ylabel=iris.feature_names[pair[1]],
    )

    # Plot the training points
    for i, color in zip(range(n_classes), plot_colors):
        idx = np.where(y == i)
        plt.scatter(
            X[idx, 0],
            X[idx, 1],
            c=color,
            label=iris.target_names[i],
            edgecolor="black",
            s=15,
        )

plt.suptitle("Decision surface of decision trees trained on pairs of features")
plt.legend(loc="lower right", borderpad=0, handletextpad=0)
_ = plt.axis("tight")
Decision surface of decision trees trained on pairs of features

显示在所有特征上训练的单个决策树的结构。

from sklearn.tree import plot_tree

plt.figure()
clf = DecisionTreeClassifier().fit(iris.data, iris.target)
plot_tree(clf, filled=True)
plt.title("Decision tree trained on all the iris features")
plt.show()
Decision tree trained on all the iris features

Total running time of the script: (0 minutes 0.346 seconds)

Related examples

绘制VotingClassifier的决策边界

绘制VotingClassifier的决策边界

鸢尾花数据集

鸢尾花数据集

在鸢尾花数据集上绘制多类SGD

在鸢尾花数据集上绘制多类SGD

逻辑回归三分类器

逻辑回归三分类器

Gallery generated by Sphinx-Gallery