在 LinearSVC 中绘制支持向量#

与基于 LIBSVM 的 SVC 不同,基于 LIBLINEAR 的 LinearSVC 不提供支持向量。此示例演示了如何在 LinearSVC 中获取支持向量。

C=1, C=100
import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import make_blobs
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.svm import LinearSVC

X, y = make_blobs(n_samples=40, centers=2, random_state=0)

plt.figure(figsize=(10, 5))
for i, C in enumerate([1, 100]):
    # “hinge” 是标准的 SVM 损失函数
    clf = LinearSVC(C=C, loss="hinge", random_state=42).fit(X, y)
    # 通过决策函数获得支持向量
    decision_function = clf.decision_function(X)
    # 我们也可以手动计算决策函数
    # decision_function = np.dot(X, clf.coef_[0]) + clf.intercept_[0]
    # 支持向量是位于边界内的样本,其大小通常限制为1
    support_vector_indices = np.where(np.abs(decision_function) <= 1 + 1e-15)[0]
    support_vectors = X[support_vector_indices]

    plt.subplot(1, 2, i + 1)
    plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
    ax = plt.gca()
    DecisionBoundaryDisplay.from_estimator(
        clf,
        X,
        ax=ax,
        grid_resolution=50,
        plot_method="contour",
        colors="k",
        levels=[-1, 0, 1],
        alpha=0.5,
        linestyles=["--", "-", "--"],
    )
    plt.scatter(
        support_vectors[:, 0],
        support_vectors[:, 1],
        s=100,
        linewidth=1,
        facecolors="none",
        edgecolors="k",
    )
    plt.title("C=" + str(C))
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.076 seconds)

Related examples

SVM:最大间隔分离超平面

SVM:最大间隔分离超平面

SVM:用于不平衡类别的分离超平面

SVM:用于不平衡类别的分离超平面

在鸢尾花数据集上绘制不同的SVM分类器

在鸢尾花数据集上绘制不同的SVM分类器

使用非线性核(RBF)的单类SVM

使用非线性核(RBF)的单类SVM

Gallery generated by Sphinx-Gallery