import collections
import random
import threading
import time
from contextlib import contextmanager
from typing import Any, Callable, Generic, Iterable, List, TypeVar
import ray
from ray.util.annotations import Deprecated
from ray.util.iter_metrics import MetricsContext, SharedMetrics
# The type of an iterator element.
T = TypeVar("T")
U = TypeVar("U")
@Deprecated
def from_items(
items: List[T], num_shards: int = 2, repeat: bool = False
) -> "ParallelIterator[T]":
"""Create a parallel iterator from an existing set of objects.
The objects will be divided round-robin among the number of shards.
Args:
items: The list of items to iterate over.
num_shards: The number of worker actors to create.
repeat: Whether to cycle over the items forever.
"""
shards = [[] for _ in range(num_shards)]
for i, item in enumerate(items):
shards[i % num_shards].append(item)
name = "from_items[{}, {}, shards={}{}]".format(
items and type(items[0]).__name__ or "None",
len(items),
num_shards,
", repeat=True" if repeat else "",
)
return from_iterators(shards, repeat=repeat, name=name)
@Deprecated
def from_range(
n: int, num_shards: int = 2, repeat: bool = False
) -> "ParallelIterator[int]":
"""Create a parallel iterator over the range 0..n.
The range will be partitioned sequentially among the number of shards.
Args:
n: The max end of the range of numbers.
num_shards: The number of worker actors to create.
repeat: Whether to cycle over the range forever.
"""
generators = []
shard_size = n // num_shards
for i in range(num_shards):
start = i * shard_size
if i == num_shards - 1:
end = n
else:
end = (i + 1) * shard_size
generators.append(range(start, end))
name = (
f"from_range[{n}, shards={num_shards}" f"{', repeat=True' if repeat else ''}]"
)
return from_iterators(
generators,
repeat=repeat,
name=name,
)
@Deprecated
def from_iterators(
generators: List[Iterable[T]], repeat: bool = False, name=None
) -> "ParallelIterator[T]":
"""Create a parallel iterator from a list of iterables.
An iterable can be a conatiner (list, str, tuple, set, etc.),
a generator, or a custom class that implements __iter__ or __getitem__.
An actor will be created for each iterable.
Examples:
>>> # Create using a list of generators.
>>> from_iterators([range(100), range(100)])
>>> # Certain generators are not serializable.
>>> from_iterators([(x for x in range(100))])
... TypeError: can't pickle generator objects
>>> # So use lambda functions instead.
>>> # Lambda functions are serializable.
>>> from_iterators([lambda: (x for x in range(100))])
Args:
generators: A list of Python iterables or lambda
functions that produce an iterable when called. We allow lambda
functions since certain generators might not be serializable,
but a lambda that returns it can be.
repeat: Whether to cycle over the iterators forever.
name: Optional name to give the iterator.
"""
worker_cls = ray.remote(ParallelIteratorWorker)
actors = [worker_cls.remote(g, repeat) for g in generators]
if not name:
name = "from_iterators[shards={}{}]".format(
len(generators), ", repeat=True" if repeat else ""
)
return from_actors(actors, name=name)
@Deprecated
def from_actors(
actors: List["ray.actor.ActorHandle"], name=None
) -> "ParallelIterator[T]":
"""Create a parallel iterator from an existing set of actors.
Each actor must subclass the ParallelIteratorWorker interface.
Args:
actors: List of actors that each implement
ParallelIteratorWorker.
name: Optional name to give the iterator.
"""
if not name:
name = f"from_actors[shards={len(actors)}]"
return ParallelIterator([_ActorSet(actors, [])], name, parent_iterators=[])
@Deprecated
class ParallelIterator(Generic[T]):
"""A parallel iterator over a set of remote actors.
This can be used to iterate over a fixed set of task results
(like an actor pool), or a stream of data (e.g., a fixed range of numbers,
an infinite stream of RLlib rollout results).
This class is **serializable** and can be passed to other remote
tasks and actors. However, each shard should be read from at most one
process at a time.
Examples:
>>> # Applying a function over items in parallel.
>>> it = ray.util.iter.from_items([1, 2, 3], num_shards=2)
... <__main__.ParallelIterator object>
>>> it = it.for_each(lambda x: x * 2).gather_sync()
... <__main__.LocalIterator object>
>>> print(list(it))
... [2, 4, 6]
>>> # Creating from generators.
>>> it = ray.util.iter.from_iterators([range(3), range(3)])
... <__main__.ParallelIterator object>
>>> print(list(it.gather_sync()))
... [0, 0, 1, 1, 2, 2]
>>> # Accessing the individual shards of an iterator.
>>> it = ray.util.iter.from_range(10, num_shards=2)
... <__main__.ParallelIterator object>
>>> it0 = it.get_shard(0)
... <__main__.LocalIterator object>
>>> print(list(it0))
... [0, 1, 2, 3, 4]
>>> it1 = it.get_shard(1)
... <__main__.LocalIterator object>
>>> print(list(it1))
... [5, 6, 7, 8, 9]
>>> # Gathering results from actors synchronously in parallel.
>>> it = ray.util.iter.from_actors(workers)
... <__main__.ParallelIterator object>
>>> it = it.batch_across_shards()
... <__main__.LocalIterator object>
>>> print(next(it))
... [worker_1_result_1, worker_2_result_1]
>>> print(next(it))
... [worker_1_result_2, worker_2_result_2]
"""
def __init__(
self,
actor_sets: List["_ActorSet"],
name: str,
parent_iterators: List["ParallelIterator[Any]"],
):
"""Create a parallel iterator (this is an internal function)."""
# We track multiple sets of actors to support parallel .union().
self.actor_sets = actor_sets
self.name = name
# keep explicit reference to parent iterator for repartition
self.parent_iterators = parent_iterators
def __iter__(self):
raise TypeError(
"You must use it.gather_sync() or it.gather_async() to "
"iterate over the results of a ParallelIterator."
)
def __str__(self):
return repr(self)
def __repr__(self):
return f"ParallelIterator[{self.name}]"
def _with_transform(self, local_it_fn, name):
"""Helper function to create new Parallel Iterator"""
return ParallelIterator(
[a.with_transform(local_it_fn) for a in self.actor_sets],
name=self.name + name,
parent_iterators=self.parent_iterators,
)
def transform(
self, fn: Callable[[Iterable[T]], Iterable[U]]
) -> "ParallelIterator[U]":
"""Remotely transform the iterator.
This is advanced version of for_each that allows you to apply arbitrary
generator transformations over the iterator. Prefer to use .for_each()
when possible for simplicity.
Args:
fn: function to use to transform the iterator. The function
should pass through instances of _NextValueNotReady that appear
in its input iterator. Note that this function is only called
**once** over the input iterator.
Returns:
ParallelIterator[U]: a parallel iterator.
Examples:
>>> def f(it):
... for x in it:
... if x % 2 == 0:
... yield x
>>> from_range(10, 1).transform(f).gather_sync().take(5)
... [0, 2, 4, 6, 8]
"""
return self._with_transform(
lambda local_it: local_it.transform(fn), ".transform()"
)
def for_each(
self, fn: Callable[[T], U], max_concurrency=1, resources=None
) -> "ParallelIterator[U]":
"""Remotely apply fn to each item in this iterator.
If `max_concurrency` == 1 then `fn` will be executed serially by each
shards
`max_concurrency` should be used to achieve a high degree of
parallelism without the overhead of increasing the number of shards
(which are actor based). If `max_concurrency` is not 1, this function
provides no semantic guarantees on the output order.
Results will be returned as soon as they are ready.
A performance note: When executing concurrently, this function
maintains its own internal buffer. If `num_async` is `n` and
max_concur is `k` then the total number of buffered objects could be up
to `n + k - 1`
Args:
fn: function to apply to each item.
max_concurrency: max number of concurrent calls to fn per
shard. If 0, then apply all operations concurrently.
resources: resources that the function requires to execute.
This has the same default as `ray.remote` and is only used
when `max_concurrency > 1`.
Returns:
ParallelIterator[U]: a parallel iterator whose elements have `fn`
applied.
Examples:
>>> next(from_range(4).for_each(
lambda x: x * 2,
max_concur=2,
resources={"num_cpus": 0.1}).gather_sync()
)
... [0, 2, 4, 8]
"""
assert max_concurrency >= 0, "max_concurrency must be non-negative."
return self._with_transform(
lambda local_it: local_it.for_each(fn, max_concurrency, resources),
".for_each()",
)
def filter(self, fn: Callable[[T], bool]) -> "ParallelIterator[T]":
"""Remotely filter items from this iterator.
Args:
fn: returns False for items to drop from the iterator.
Examples:
>>> it = from_items([0, 1, 2]).filter(lambda x: x > 0)
>>> next(it.gather_sync())
... [1, 2]
"""
return self._with_transform(lambda local_it: local_it.filter(fn), ".filter()")
def batch(self, n: int) -> "ParallelIterator[List[T]]":
"""Remotely batch together items in this iterator.
Args:
n: Number of items to batch together.
Examples:
>>> next(from_range(10, 1).batch(4).gather_sync())
... [0, 1, 2, 3]
"""
return self._with_transform(lambda local_it: local_it.batch(n), f".batch({n})")
def flatten(self) -> "ParallelIterator[T[0]]":
"""Flatten batches of items into individual items.
Examples:
>>> next(from_range(10, 1).batch(4).flatten())
... 0
"""
return self._with_transform(lambda local_it: local_it.flatten(), ".flatten()")
def combine(self, fn: Callable[[T], List[U]]) -> "ParallelIterator[U]":
"""Transform and then combine items horizontally.
This is the equivalent of for_each(fn).flatten() (flat map).
"""
it = self.for_each(fn).flatten()
it.name = self.name + ".combine()"
return it
def local_shuffle(
self, shuffle_buffer_size: int, seed: int = None
) -> "ParallelIterator[T]":
"""Remotely shuffle items of each shard independently
Args:
shuffle_buffer_size: The algorithm fills a buffer with
shuffle_buffer_size elements and randomly samples elements from
this buffer, replacing the selected elements with new elements.
For perfect shuffling, this argument should be greater than or
equal to the largest iterator size.
seed: Seed to use for
randomness. Default value is None.
Returns:
A ParallelIterator with a local shuffle applied on the base
iterator
Examples:
>>> it = from_range(10, 1).local_shuffle(shuffle_buffer_size=2)
>>> it = it.gather_sync()
>>> next(it)
0
>>> next(it)
2
>>> next(it)
3
>>> next(it)
1
"""
return self._with_transform(
lambda local_it: local_it.shuffle(shuffle_buffer_size, seed),
".local_shuffle(shuffle_buffer_size={}, seed={})".format(
shuffle_buffer_size, str(seed) if seed is not None else "None"
),
)
def repartition(
self, num_partitions: int, batch_ms: int = 0
) -> "ParallelIterator[T]":
"""Returns a new ParallelIterator instance with num_partitions shards.
The new iterator contains the same data in this instance except with
num_partitions shards. The data is split in round-robin fashion for
the new ParallelIterator.
Args:
num_partitions: The number of shards to use for the new
ParallelIterator
batch_ms: Batches items for batch_ms milliseconds
on each shard before retrieving it.
Increasing batch_ms increases latency but improves throughput.
Returns:
A ParallelIterator with num_partitions number of shards and the
data of this ParallelIterator split round-robin among the new
number of shards.
Examples:
>>> it = from_range(8, 2)
>>> it = it.repartition(3)
>>> list(it.get_shard(0))
[0, 4, 3, 7]
>>> list(it.get_shard(1))
[1, 5]
>>> list(it.get_shard(2))
[2, 6]
"""
# initialize the local iterators for all the actors
all_actors = []
for actor_set in self.actor_sets:
actor_set.init_actors()
all_actors.extend(actor_set.actors)
def base_iterator(num_partitions, partition_index, timeout=None):
futures = {}
for a in all_actors:
futures[
a.par_iter_slice_batch.remote(
step=num_partitions, start=partition_index, batch_ms=batch_ms
)
] = a
while futures:
pending = list(futures)
if timeout is None:
# First try to do a batch wait for efficiency.
ready, _ = ray.wait(pending, num_returns=len(pending), timeout=0)
# Fall back to a blocking wait.
if not ready:
ready, _ = ray.wait(pending, num_returns=1)
else:
ready, _ = ray.wait(
pending, num_returns=len(pending), timeout=timeout
)
for obj_ref in ready:
actor = futures.pop(obj_ref)
try:
batch = ray.get(obj_ref)
futures[
actor.par_iter_slice_batch.remote(
step=num_partitions,
start=partition_index,
batch_ms=batch_ms,
)
] = actor
for item in batch:
yield item
except StopIteration:
pass
# Always yield after each round of wait with timeout.
if timeout is not None:
yield _NextValueNotReady()
def make_gen_i(i):
return lambda: base_iterator(num_partitions, i)
name = self.name + f".repartition[num_partitions={num_partitions}]"
generators = [make_gen_i(s) for s in range(num_partitions)]
worker_cls = ray.remote(ParallelIteratorWorker)
actors = [worker_cls.remote(g, repeat=False) for g in generators]
# need explicit reference to self so actors in this instance do not die
return ParallelIterator([_ActorSet(actors, [])], name, parent_iterators=[self])
def gather_sync(self) -> "LocalIterator[T]":
"""Returns a local iterable for synchronous iteration.
New items will be fetched from the shards on-demand as the iterator
is stepped through.
This is the equivalent of batch_across_shards().flatten().
Examples:
>>> it = from_range(100, 1).gather_sync()
>>> next(it)
... 0
>>> next(it)
... 1
>>> next(it)
... 2
"""
it = self.batch_across_shards().flatten()
it.name = f"{self}.gather_sync()"
return it
def batch_across_shards(self) -> "LocalIterator[List[T]]":
"""Iterate over the results of multiple shards in parallel.
Examples:
>>> it = from_iterators([range(3), range(3)])
>>> next(it.batch_across_shards())
... [0, 0]
"""
def base_iterator(timeout=None):
active = []
for actor_set in self.actor_sets:
actor_set.init_actors()
active.extend(actor_set.actors)
futures = [a.par_iter_next.remote() for a in active]
while active:
try:
yield ray.get(futures, timeout=timeout)
futures = [a.par_iter_next.remote() for a in active]
# Always yield after each round of gets with timeout.
if timeout is not None:
yield _NextValueNotReady()
except TimeoutError:
yield _NextValueNotReady()
except StopIteration:
# Find and remove the actor that produced StopIteration.
results = []
for a, f in zip(list(active), futures):
try:
results.append(ray.get(f))
except StopIteration:
active.remove(a)
if results:
yield results
futures = [a.par_iter_next.remote() for a in active]
name = f"{self}.batch_across_shards()"
return LocalIterator(base_iterator, SharedMetrics(), name=name)
def gather_async(self, batch_ms=0, num_async=1) -> "LocalIterator[T]":
"""Returns a local iterable for asynchronous iteration.
New items will be fetched from the shards asynchronously as soon as
the previous one is computed. Items arrive in non-deterministic order.
Arguments:
batch_ms: Batches items for batch_ms milliseconds
on each shard before retrieving it.
Increasing batch_ms increases latency but improves throughput.
If this value is 0, then items are returned immediately.
num_async: The max number of async requests in flight
per actor. Increasing this improves the amount of pipeline
parallelism in the iterator.
Examples:
>>> it = from_range(100, 1).gather_async()
>>> next(it)
... 3
>>> next(it)
... 0
>>> next(it)
... 1
"""
if num_async < 1:
raise ValueError("queue depth must be positive")
if batch_ms < 0:
raise ValueError("batch time must be positive")
# Forward reference to the returned iterator.
local_iter = None
def base_iterator(timeout=None):
all_actors = []
for actor_set in self.actor_sets:
actor_set.init_actors()
all_actors.extend(actor_set.actors)
futures = {}
for _ in range(num_async):
for a in all_actors:
futures[a.par_iter_next_batch.remote(batch_ms)] = a
while futures:
pending = list(futures)
if timeout is None:
# First try to do a batch wait for efficiency.
ready, _ = ray.wait(pending, num_returns=len(pending), timeout=0)
# Fall back to a blocking wait.
if not ready:
ready, _ = ray.wait(pending, num_returns=1)
else:
ready, _ = ray.wait(
pending, num_returns=len(pending), timeout=timeout
)
for obj_ref in ready:
actor = futures.pop(obj_ref)
try:
local_iter.shared_metrics.get().current_actor = actor
batch = ray.get(obj_ref)
futures[actor.par_iter_next_batch.remote(batch_ms)] = actor
for item in batch:
yield item
except StopIteration:
pass
# Always yield after each round of wait with timeout.
if timeout is not None:
yield _NextValueNotReady()
name = f"{self}.gather_async()"
local_iter = LocalIterator(base_iterator, SharedMetrics(), name=name)
return local_iter
def take(self, n: int) -> List[T]:
"""Return up to the first n items from this iterator."""
return self.gather_sync().take(n)
def show(self, n: int = 20):
"""Print up to the first n items from this iterator."""
return self.gather_sync().show(n)
def union(self, other: "ParallelIterator[T]") -> "ParallelIterator[T]":
"""Return an iterator that is the union of this and the other."""
if not isinstance(other, ParallelIterator):
raise TypeError(
f"other must be of type ParallelIterator, got {type(other)}"
)
actor_sets = []
actor_sets.extend(self.actor_sets)
actor_sets.extend(other.actor_sets)
# if one of these iterators is a result of a repartition, we need to
# keep an explicit reference to its parent iterator
return ParallelIterator(
actor_sets,
f"ParallelUnion[{self}, {other}]",
parent_iterators=self.parent_iterators + other.parent_iterators,
)
def select_shards(self, shards_to_keep: List[int]) -> "ParallelIterator[T]":
"""Return a child iterator that only iterates over given shards.
It is the user's responsibility to ensure child iterators are operating
over disjoint sub-sets of this iterator's shards.
"""
if len(self.actor_sets) > 1:
raise ValueError("select_shards() is not allowed after union()")
if len(shards_to_keep) == 0:
raise ValueError("at least one shard must be selected")
old_actor_set = self.actor_sets[0]
new_actors = [
a for (i, a) in enumerate(old_actor_set.actors) if i in shards_to_keep
]
assert len(new_actors) == len(shards_to_keep), "Invalid actor index"
new_actor_set = _ActorSet(new_actors, old_actor_set.transforms)
return ParallelIterator(
[new_actor_set],
f"{self}.select_shards({len(shards_to_keep)} total)",
parent_iterators=self.parent_iterators,
)
def num_shards(self) -> int:
"""Return the number of worker actors backing this iterator."""
return sum(len(a.actors) for a in self.actor_sets)
def shards(self) -> List["LocalIterator[T]"]:
"""Return the list of all shards."""
return [self.get_shard(i) for i in range(self.num_shards())]
def get_shard(
self, shard_index: int, batch_ms: int = 0, num_async: int = 1
) -> "LocalIterator[T]":
"""Return a local iterator for the given shard.
The iterator is guaranteed to be serializable and can be passed to
remote tasks or actors.
Arguments:
shard_index: Index of the shard to gather.
batch_ms: Batches items for batch_ms milliseconds
before retrieving it.
Increasing batch_ms increases latency but improves throughput.
If this value is 0, then items are returned immediately.
num_async: The max number of requests in flight.
Increasing this improves the amount of pipeline
parallelism in the iterator.
"""
if num_async < 1:
raise ValueError("num async must be positive")
if batch_ms < 0:
raise ValueError("batch time must be positive")
a, t = None, None
i = shard_index
for actor_set in self.actor_sets:
if i < len(actor_set.actors):
a = actor_set.actors[i]
t = actor_set.transforms
break
else:
i -= len(actor_set.actors)
if a is None:
raise ValueError("Shard index out of range", shard_index, self.num_shards())
def base_iterator(timeout=None):
queue = collections.deque()
ray.get(a.par_iter_init.remote(t))
for _ in range(num_async):
queue.append(a.par_iter_next_batch.remote(batch_ms))
while True:
try:
batch = ray.get(queue.popleft(), timeout=timeout)
queue.append(a.par_iter_next_batch.remote(batch_ms))
for item in batch:
yield item
# Always yield after each round of gets with timeout.
if timeout is not None:
yield _NextValueNotReady()
except TimeoutError:
yield _NextValueNotReady()
except StopIteration:
break
name = self.name + f".shard[{shard_index}]"
return LocalIterator(base_iterator, SharedMetrics(), name=name)
@Deprecated
class LocalIterator(Generic[T]):
"""An iterator over a single shard of data.
It implements similar transformations as ParallelIterator[T], but the
transforms will be applied locally and not remotely in parallel.
This class is **serializable** and can be passed to other remote
tasks and actors. However, it should be read from at most one process at
a time."""
# If a function passed to LocalIterator.for_each() has this method,
# we will call it at the beginning of each data fetch call. This can be
# used to measure the underlying wait latency for measurement purposes.
ON_FETCH_START_HOOK_NAME = "_on_fetch_start"
thread_local = threading.local()
def __init__(
self,
base_iterator: Callable[[], Iterable[T]],
shared_metrics: SharedMetrics,
local_transforms: List[Callable[[Iterable], Any]] = None,
timeout: int = None,
name=None,
):
"""Create a local iterator (this is an internal function).
Args:
base_iterator: A function that produces the base iterator.
This is a function so that we can ensure LocalIterator is
serializable.
shared_metrics: Existing metrics context or a new
context. Should be the same for each chained iterator.
local_transforms: A list of transformation functions to be
applied on top of the base iterator. When iteration begins, we
create the base iterator and apply these functions. This lazy
creation ensures LocalIterator is serializable until you start
iterating over it.
timeout: Optional timeout in seconds for this iterator, after
which _NextValueNotReady will be returned. This avoids
blocking.
name: Optional name for this iterator.
"""
assert isinstance(shared_metrics, SharedMetrics)
self.base_iterator = base_iterator
self.built_iterator = None
self.local_transforms = local_transforms or []
self.shared_metrics = shared_metrics
self.timeout = timeout
self.name = name or "unknown"
@staticmethod
def get_metrics() -> MetricsContext:
"""Return the current metrics context.
This can only be called within an iterator function."""
if (
not hasattr(LocalIterator.thread_local, "metrics")
or LocalIterator.thread_local.metrics is None
):
raise ValueError("Cannot access context outside an iterator.")
return LocalIterator.thread_local.metrics
def _build_once(self):
if self.built_iterator is None:
it = iter(self.base_iterator(self.timeout))
for fn in self.local_transforms:
it = fn(it)
self.built_iterator = it
@contextmanager
def _metrics_context(self):
self.thread_local.metrics = self.shared_metrics.get()
yield
def __iter__(self):
self._build_once()
return self.built_iterator
def __next__(self):
self._build_once()
return next(self.built_iterator)
def __str__(self):
return repr(self)
def __repr__(self):
return f"LocalIterator[{self.name}]"
def transform(self, fn: Callable[[Iterable[T]], Iterable[U]]) -> "LocalIterator[U]":
# TODO(ekl) can we automatically handle NextValueNotReady here?
def apply_transform(it):
for item in fn(it):
yield item
return LocalIterator(
self.base_iterator,
self.shared_metrics,
self.local_transforms + [apply_transform],
name=self.name + ".transform()",
)
def for_each(
self, fn: Callable[[T], U], max_concurrency=1, resources=None
) -> "LocalIterator[U]":
if max_concurrency == 1:
def apply_foreach(it):
for item in it:
if isinstance(item, _NextValueNotReady):
yield item
else:
# Keep retrying the function until it returns a valid
# value. This allows for non-blocking functions.
while True:
with self._metrics_context():
result = fn(item)
yield result
if not isinstance(result, _NextValueNotReady):
break
else:
if resources is None:
resources = {}
def apply_foreach(it):
cur = []
remote = ray.remote(fn).options(**resources)
remote_fn = remote.remote
for item in it:
if isinstance(item, _NextValueNotReady):
yield item
else:
if max_concurrency and len(cur) >= max_concurrency:
finished, cur = ray.wait(cur)
yield from ray.get(finished)
cur.append(remote_fn(item))
while cur:
finished, cur = ray.wait(cur)
yield from ray.get(finished)
if hasattr(fn, LocalIterator.ON_FETCH_START_HOOK_NAME):
unwrapped = apply_foreach
def add_wait_hooks(it):
it = unwrapped(it)
new_item = True
while True:
# Avoids calling on_fetch_start repeatedly if we are
# yielding _NextValueNotReady.
if new_item:
with self._metrics_context():
fn._on_fetch_start()
new_item = False
item = next(it)
if not isinstance(item, _NextValueNotReady):
new_item = True
yield item
apply_foreach = add_wait_hooks
return LocalIterator(
self.base_iterator,
self.shared_metrics,
self.local_transforms + [apply_foreach],
name=self.name + ".for_each()",
)
def filter(self, fn: Callable[[T], bool]) -> "LocalIterator[T]":
def apply_filter(it):
for item in it:
with self._metrics_context():
if isinstance(item, _NextValueNotReady) or fn(item):
yield item
return LocalIterator(
self.base_iterator,
self.shared_metrics,
self.local_transforms + [apply_filter],
name=self.name + ".filter()",
)
def batch(self, n: int) -> "LocalIterator[List[T]]":
def apply_batch(it):
batch = []
for item in it:
if isinstance(item, _NextValueNotReady):
yield item
else:
batch.append(item)
if len(batch) >= n:
yield batch
batch = []
if batch:
yield batch
return LocalIterator(
self.base_iterator,
self.shared_metrics,
self.local_transforms + [apply_batch],
name=self.name + f".batch({n})",
)
def flatten(self) -> "LocalIterator[T[0]]":
def apply_flatten(it):
for item in it:
if isinstance(item, _NextValueNotReady):
yield item
else:
for subitem in item:
yield subitem
return LocalIterator(
self.base_iterator,
self.shared_metrics,
self.local_transforms + [apply_flatten],
name=self.name + ".flatten()",
)
def shuffle(self, shuffle_buffer_size: int, seed: int = None) -> "LocalIterator[T]":
"""Shuffle items of this iterator
Args:
shuffle_buffer_size: The algorithm fills a buffer with
shuffle_buffer_size elements and randomly samples elements from
this buffer, replacing the selected elements with new elements.
For perfect shuffling, this argument should be greater than or
equal to the largest iterator size.
seed: Seed to use for
randomness. Default value is None.
Returns:
A new LocalIterator with shuffling applied
"""
shuffle_random = random.Random(seed)
def apply_shuffle(it):
buffer = []
for item in it:
if isinstance(item, _NextValueNotReady):
yield item
else:
buffer.append(item)
if len(buffer) >= shuffle_buffer_size:
yield buffer.pop(shuffle_random.randint(0, len(buffer) - 1))
while len(buffer) > 0:
yield buffer.pop(shuffle_random.randint(0, len(buffer) - 1))
return LocalIterator(
self.base_iterator,
self.shared_metrics,
self.local_transforms + [apply_shuffle],
name=self.name
+ ".shuffle(shuffle_buffer_size={}, seed={})".format(
shuffle_buffer_size, str(seed) if seed is not None else "None"
),
)
def combine(self, fn: Callable[[T], List[U]]) -> "LocalIterator[U]":
it = self.for_each(fn).flatten()
it.name = self.name + ".combine()"
return it
def zip_with_source_actor(self):
def zip_with_source(item):
metrics = LocalIterator.get_metrics()
if metrics.current_actor is None:
raise ValueError("Could not identify source actor of item")
return metrics.current_actor, item
it = self.for_each(zip_with_source)
it.name = self.name + ".zip_with_source_actor()"
return it
def take(self, n: int) -> List[T]:
"""Return up to the first n items from this iterator."""
out = []
for item in self:
out.append(item)
if len(out) >= n:
break
return out
def show(self, n: int = 20):
"""Print up to the first n items from this iterator."""
i = 0
for item in self:
print(item)
i += 1
if i >= n:
break
def duplicate(self, n) -> List["LocalIterator[T]"]:
"""Copy this iterator `n` times, duplicating the data.
The child iterators will be prioritized by how much of the parent
stream they have consumed. That is, we will not allow children to fall
behind, since that can cause infinite memory buildup in this operator.
Returns:
List[LocalIterator[T]]: child iterators that each have a copy
of the data of this iterator.
"""
if n < 2:
raise ValueError("Number of copies must be >= 2")
queues = []
for _ in range(n):
queues.append(collections.deque())
def fill_next(timeout):
self.timeout = timeout
item = next(self)
for q in queues:
q.append(item)
def make_next(i):
def gen(timeout):
while True:
my_len = len(queues[i])
max_len = max(len(q) for q in queues)
# Yield to let other iterators that have fallen behind
# process more items.
if my_len < max_len:
yield _NextValueNotReady()
else:
if len(queues[i]) == 0:
try:
fill_next(timeout)
except StopIteration:
return
yield queues[i].popleft()
return gen
iterators = []
for i in range(n):
iterators.append(
LocalIterator(
make_next(i),
self.shared_metrics,
[],
name=self.name + f".duplicate[{i}]",
)
)
return iterators
def union(
self,
*others: "LocalIterator[T]",
deterministic: bool = False,
round_robin_weights: List[float] = None,
) -> "LocalIterator[T]":
"""Return an iterator that is the union of this and the others.
Args:
deterministic: If deterministic=True, we alternate between
reading from one iterator and the others. Otherwise we return
items from iterators as they become ready.
round_robin_weights: List of weights to use for round robin
mode. For example, [2, 1] will cause the iterator to pull twice
as many items from the first iterator as the second.
[2, 1, "*"] will cause as many items to be pulled as possible
from the third iterator without blocking. This overrides the
deterministic flag.
"""
for it in others:
if not isinstance(it, LocalIterator):
raise ValueError(f"other must be of type LocalIterator, got {type(it)}")
active = []
parent_iters = [self] + list(others)
shared_metrics = SharedMetrics(parents=[p.shared_metrics for p in parent_iters])
timeout = None if deterministic else 0
if round_robin_weights:
if len(round_robin_weights) != len(parent_iters):
raise ValueError(
"Length of round robin weights must equal number of "
"iterators total."
)
timeouts = [0 if w == "*" else None for w in round_robin_weights]
else:
timeouts = [timeout] * len(parent_iters)
round_robin_weights = [1] * len(parent_iters)
for i, it in enumerate(parent_iters):
active.append(
LocalIterator(
it.base_iterator,
shared_metrics,
it.local_transforms,
timeout=timeouts[i],
)
)
active = list(zip(round_robin_weights, active))
def build_union(timeout=None):
while True:
for weight, it in list(active):
if weight == "*":
max_pull = 100 # TOOD(ekl) how to best bound this?
else:
max_pull = _randomized_int_cast(weight)
try:
for _ in range(max_pull):
item = next(it)
if isinstance(item, _NextValueNotReady):
if timeout is not None:
yield item
break
else:
yield item
except StopIteration:
active.remove((weight, it))
if not active:
break
return LocalIterator(
build_union,
shared_metrics,
[],
name=f"LocalUnion[{self}, {', '.join(map(str, others))}]",
)
@Deprecated
class ParallelIteratorWorker(object):
"""Worker actor for a ParallelIterator.
Actors that are passed to iter.from_actors() must subclass this interface.
"""
def __init__(self, item_generator: Any, repeat: bool):
"""Create an iterator worker.
Subclasses must call this init function.
Args:
item_generator: A Python iterable or lambda function
that produces a generator when called. We allow lambda
functions since the generator itself might not be serializable,
but a lambda that returns it can be.
repeat: Whether to loop over the iterator forever.
"""
def make_iterator():
if callable(item_generator):
return item_generator()
else:
return item_generator
if repeat:
def cycle():
while True:
it = iter(make_iterator())
if it is item_generator:
raise ValueError(
"Cannot iterate over {0} multiple times."
+ "Please pass in the base iterable or"
+ "lambda: {0} instead.".format(item_generator)
)
for item in it:
yield item
self.item_generator = cycle()
else:
self.item_generator = make_iterator()
self.transforms = []
self.local_it = None
self.next_ith_buffer = None
def par_iter_init(self, transforms):
"""Implements ParallelIterator worker init."""
it = LocalIterator(lambda timeout: self.item_generator, SharedMetrics())
for fn in transforms:
it = fn(it)
assert it is not None, fn
self.local_it = iter(it)
def par_iter_next(self):
"""Implements ParallelIterator worker item fetch."""
assert self.local_it is not None, "must call par_iter_init()"
return next(self.local_it)
def par_iter_next_batch(self, batch_ms: int):
"""Batches par_iter_next."""
batch = []
if batch_ms == 0:
batch.append(self.par_iter_next())
return batch
t_end = time.time() + (0.001 * batch_ms)
while time.time() < t_end:
try:
batch.append(self.par_iter_next())
except StopIteration:
if len(batch) == 0:
raise StopIteration
else:
pass
return batch
def par_iter_slice(self, step: int, start: int):
"""Iterates in increments of step starting from start."""
assert self.local_it is not None, "must call par_iter_init()"
if self.next_ith_buffer is None:
self.next_ith_buffer = collections.defaultdict(list)
index_buffer = self.next_ith_buffer[start]
if len(index_buffer) > 0:
return index_buffer.pop(0)
else:
for j in range(step):
try:
val = next(self.local_it)
self.next_ith_buffer[j].append(val)
except StopIteration:
pass
if not self.next_ith_buffer[start]:
raise StopIteration
return self.next_ith_buffer[start].pop(0)
def par_iter_slice_batch(self, step: int, start: int, batch_ms: int):
"""Batches par_iter_slice."""
batch = []
if batch_ms == 0:
batch.append(self.par_iter_slice(step, start))
return batch
t_end = time.time() + (0.001 * batch_ms)
while time.time() < t_end:
try:
batch.append(self.par_iter_slice(step, start))
except StopIteration:
if len(batch) == 0:
raise StopIteration
else:
pass
return batch
def _randomized_int_cast(float_value):
base = int(float_value)
remainder = float_value - base
if random.random() < remainder:
base += 1
return base
class _NextValueNotReady(Exception):
"""Indicates that a local iterator has no value currently available.
This is used internally to implement the union() of multiple blocking
local generators."""
pass
class _ActorSet(object):
"""Helper class that represents a set of actors and transforms."""
def __init__(
self,
actors: List["ray.actor.ActorHandle"],
transforms: List[Callable[["LocalIterator"], "LocalIterator"]],
):
self.actors = actors
self.transforms = transforms
def init_actors(self):
ray.get([a.par_iter_init.remote(self.transforms) for a in self.actors])
def with_transform(self, fn):
return _ActorSet(self.actors, self.transforms + [fn])