使用 PyTorch Lightning 与 Tune#

PyTorch Lightning 是一个将结构引入 PyTorch 模型训练的框架。它旨在避免样板代码,因此在构建新模型时,无需重复编写相同的训练循环。

../../_images/pytorch_lightning_full.png

PyTorch Lightning 的主要抽象是 LightningModule 类,该类应该由你的应用程序扩展。有 一篇关于如何将模型从普通 PyTorch 转移到 Lightning 的优秀文章

PyTorch Lightning 的类结构使得定义和调整模型参数变得非常容易。本教程将向你展示如何使用 Ray Train 的 TorchTrainer与 Tune 一起,找到最佳参数集,以训练一个 MNIST 分类器为例。值得注意的是,LightningModule 完全不需要进行任何更改,因此,你可以将其即插即用到现有模型中,前提是它们的参数是可配置的!

备注

要运行此示例,你需要安装以下内容:

$ pip install "ray[tune]" torch torchvision pytorch_lightning

MNIST 的 PyTorch Lightning 分类器#

让我们首先从一个基本的 PyTorch Lightning 实现的 MNIST 分类器开始。此分类器此时不包含任何调优代码。

首先,我们导入一些模块:

import os
import torch
import tempfile
import pytorch_lightning as pl
import torch.nn.functional as F
from filelock import FileLock
from torchmetrics import Accuracy
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
from torchvision import transforms

我们的示例基于之前提到的 博客文章 中的 MNIST 示例。我们将原始模型和数据集定义调整为 MNISTClassifierMNISTDataModule

class MNISTClassifier(pl.LightningModule):
    def __init__(self, config):
        super(MNISTClassifier, self).__init__()
        self.accuracy = Accuracy(task="multiclass", num_classes=10, top_k=1)
        self.layer_1_size = config["layer_1_size"]
        self.layer_2_size = config["layer_2_size"]
        self.lr = config["lr"]

        # MNIST图像的形状为(1, 28, 28)(通道数, 宽度, 高度)
        self.layer_1 = torch.nn.Linear(28 * 28, self.layer_1_size)
        self.layer_2 = torch.nn.Linear(self.layer_1_size, self.layer_2_size)
        self.layer_3 = torch.nn.Linear(self.layer_2_size, 10)
        self.eval_loss = []
        self.eval_accuracy = []

    def cross_entropy_loss(self, logits, labels):
        return F.nll_loss(logits, labels)

    def forward(self, x):
        batch_size, channels, width, height = x.size()
        x = x.view(batch_size, -1)

        x = self.layer_1(x)
        x = torch.relu(x)

        x = self.layer_2(x)
        x = torch.relu(x)

        x = self.layer_3(x)
        x = torch.log_softmax(x, dim=1)

        return x

    def training_step(self, train_batch, batch_idx):
        x, y = train_batch
        logits = self.forward(x)
        loss = self.cross_entropy_loss(logits, y)
        accuracy = self.accuracy(logits, y)

        self.log("ptl/train_loss", loss)
        self.log("ptl/train_accuracy", accuracy)
        return loss

    def validation_step(self, val_batch, batch_idx):
        x, y = val_batch
        logits = self.forward(x)
        loss = self.cross_entropy_loss(logits, y)
        accuracy = self.accuracy(logits, y)
        self.eval_loss.append(loss)
        self.eval_accuracy.append(accuracy)
        return {"val_loss": loss, "val_accuracy": accuracy}

    def on_validation_epoch_end(self):
        avg_loss = torch.stack(self.eval_loss).mean()
        avg_acc = torch.stack(self.eval_accuracy).mean()
        self.log("ptl/val_loss", avg_loss, sync_dist=True)
        self.log("ptl/val_accuracy", avg_acc, sync_dist=True)
        self.eval_loss.clear()
        self.eval_accuracy.clear()

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer


class MNISTDataModule(pl.LightningDataModule):
    def __init__(self, batch_size=128):
        super().__init__()
        self.data_dir = tempfile.mkdtemp()
        self.batch_size = batch_size
        self.transform = transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        )

    def setup(self, stage=None):
        with FileLock(f"{self.data_dir}.lock"):
            mnist = MNIST(
                self.data_dir, train=True, download=True, transform=self.transform
            )
            self.mnist_train, self.mnist_val = random_split(mnist, [55000, 5000])

            self.mnist_test = MNIST(
                self.data_dir, train=False, download=True, transform=self.transform
            )

    def train_dataloader(self):
        return DataLoader(self.mnist_train, batch_size=self.batch_size, num_workers=4)

    def val_dataloader(self):
        return DataLoader(self.mnist_val, batch_size=self.batch_size, num_workers=4)

    def test_dataloader(self):
        return DataLoader(self.mnist_test, batch_size=self.batch_size, num_workers=4)
default_config = {
    "layer_1_size": 128,
    "layer_2_size": 256,
    "lr": 1e-3,
}
定义一个训练函数,该函数使用Ray Train工具创建模型、数据模块和Lightning训练器。
from ray.train.lightning import (
    RayDDPStrategy,
    RayLightningEnvironment,
    RayTrainReportCallback,
    prepare_trainer,
)


def train_func(config):
    dm = MNISTDataModule(batch_size=config["batch_size"])
    model = MNISTClassifier(config)

    trainer = pl.Trainer(
        devices="auto",
        accelerator="auto",
        strategy=RayDDPStrategy(),
        callbacks=[RayTrainReportCallback()],
        plugins=[RayLightningEnvironment()],
        enable_progress_bar=False,
    )
    trainer = prepare_trainer(trainer)
    trainer.fit(model, datamodule=dm)

调整模型参数#

上述参数应该能够让您获得超过90%的良好准确性。然而,我们可以通过简单地更改一些超参数来进一步提高这一点。例如,如果我们使用更小的学习率和更大的中间层大小,也许会得到更高的准确率。

我们不必手动遍历所有的参数组合,而是可以使用Tune来系统地试验参数组合,找到表现最佳的一组。

首先,我们需要一些额外的导入:

from ray import tune
from ray.tune.schedulers import ASHAScheduler

配置搜索空间#

现在我们配置参数搜索空间。我们希望在不同的层维度、学习率和批处理大小之间进行选择。学习率应该在 0.00010.1 之间均匀取样。tune.loguniform() 函数是语法糖,使得在这些不同数量级之间取样更容易,特别是我们也能够取样小值。同样,tune.choice() 函数则是从所有提供的选项中进行取样。

search_space = {
    "layer_1_size": tune.choice([32, 64, 128]),
    "layer_2_size": tune.choice([64, 128, 256]),
    "lr": tune.loguniform(1e-4, 1e-1),
    "batch_size": tune.choice([32, 64]),
}

选择调度器#

在这个例子中,我们使用异步超带调度器。这个调度器在每次迭代中决定哪些试验可能表现不佳,并停止这些试验。通过这种方式,我们不会在不好的超参数配置上浪费任何资源。

# 最大训练轮数
num_epochs = 5

# 参数空间中的样本数量
num_samples = 10

如果您有更多的资源可用,您可以相应地修改上述参数。例如,增加训练轮数,增加参数样本。

scheduler = ASHAScheduler(max_t=num_epochs, grace_period=1, reduction_factor=2)

使用GPU进行训练#

我们可以指定Tune在每次试验中请求的资源数量,包括GPU。

TorchTrainer负责分布式数据并行训练的环境设置,模型和数据将自动分配到GPU上。您只需在ScalingConfig中设置每个工作器的GPU数量,并在训练函数中将accelerator="auto"设置。

from ray.train import RunConfig, ScalingConfig, CheckpointConfig

scaling_config = ScalingConfig(
    num_workers=3, use_gpu=True, resources_per_worker={"CPU": 1, "GPU": 1}
)

run_config = RunConfig(
    checkpoint_config=CheckpointConfig(
        num_to_keep=2,
        checkpoint_score_attribute="ptl/val_accuracy",
        checkpoint_score_order="max",
    ),
)
from ray.train.torch import TorchTrainer

# 定义一个不带超参数的TorchTrainer供Tuner使用
ray_trainer = TorchTrainer(
    train_func,
    scaling_config=scaling_config,
    run_config=run_config,
)

整合起来#

最后,我们需要创建一个 Tuner() 对象并使用 tuner.fit() 启动 Ray Tune。完整的代码如下:

def tune_mnist_asha(num_samples=10):
    scheduler = ASHAScheduler(max_t=num_epochs, grace_period=1, reduction_factor=2)

    tuner = tune.Tuner(
        ray_trainer,
        param_space={"train_loop_config": search_space},
        tune_config=tune.TuneConfig(
            metric="ptl/val_accuracy",
            mode="max",
            num_samples=num_samples,
            scheduler=scheduler,
        ),
    )
    return tuner.fit()


results = tune_mnist_asha(num_samples=num_samples)

Tune Status

Current time:2023-09-07 14:03:52
Running for: 00:05:13.92
Memory: 20.5/186.6 GiB

System Info

Using AsyncHyperBand: num_stopped=10
Bracket: Iter 4.000: 0.9709362387657166 | Iter 2.000: 0.9617255330085754 | Iter 1.000: 0.9477165043354034
Logical resource usage: 4.0/48 CPUs, 3.0/4 GPUs (0.0/1.0 accelerator_type:None)

Trial Status

Trial name status loc train_loop_config/ba tch_size train_loop_config/la yer_1_size train_loop_config/la yer_2_size train_loop_config/lr iter total time (s) ptl/train_loss ptl/train_accuracy ptl/val_loss
TorchTrainer_5144b_00000TERMINATED10.0.0.84:63990 32 64256 0.0316233 5 29.3336 0.973613 0.766667 0.580943
TorchTrainer_5144b_00001TERMINATED10.0.0.84:71294 64128 64 0.0839278 1 12.2275 2.19514 0.266667 1.56644
TorchTrainer_5144b_00002TERMINATED10.0.0.84:73540 32 64256 0.000233034 5 29.1314 0.146903 0.933333 0.114229
TorchTrainer_5144b_00003TERMINATED10.0.0.84:80840 64128 64 0.00109259 5 21.6534 0.0474913 0.966667 0.0714878
TorchTrainer_5144b_00004TERMINATED10.0.0.84:88077 32 32128 0.00114083 5 29.6367 0.0990443 0.966667 0.0891999
TorchTrainer_5144b_00005TERMINATED10.0.0.84:95388 32 64 64 0.00924264 4 25.7089 0.0349707 1 0.153937
TorchTrainer_5144b_00006TERMINATED10.0.0.84:10143432128256 0.00325671 5 29.5763 0.0708755 0.966667 0.0820903
TorchTrainer_5144b_00007TERMINATED10.0.0.84:10875032 32 64 0.000123766 1 13.9326 0.27464 0.966667 0.401102
TorchTrainer_5144b_00008TERMINATED10.0.0.84:11101964128256 0.00371762 5 21.8337 0.00108961 1 0.0579874
TorchTrainer_5144b_00009TERMINATED10.0.0.84:11825532128128 0.00397956 5 29.8334 0.00940019 1 0.0685028
(TrainTrainable pid=63990) 2023-09-07 13:58:43.025064: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=63990) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(TrainTrainable pid=63990) 2023-09-07 13:58:43.165187: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=63990) 2023-09-07 13:58:43.907088: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=63990) 2023-09-07 13:58:43.907153: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=63990) 2023-09-07 13:58:43.907160: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=63990) Starting distributed worker processes: ['64101 (10.0.0.84)', '64102 (10.0.0.84)', '64103 (10.0.0.84)']
(RayTrainWorker pid=64101) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=64102) 2023-09-07 13:58:50.419714: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=64102) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64101) 2023-09-07 13:58:50.419718: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=64101) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64102) 2023-09-07 13:58:50.555450: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=64102) 2023-09-07 13:58:51.317522: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=64102) 2023-09-07 13:58:51.317610: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=64102) 2023-09-07 13:58:51.317618: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=64102) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=64101) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=64101)   rank_zero_warn(
(RayTrainWorker pid=64101) GPU available: True, used: True
(RayTrainWorker pid=64101) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=64101) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=64101) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=64102) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
(RayTrainWorker pid=64102) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpydcy4598/MNIST/raw/train-images-idx3-ubyte.gz
100%|██████████| 9912422/9912422 [00:00<00:00, 120812916.07it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 101305832.98it/s]
(RayTrainWorker pid=64102) Extracting /tmp/tmpydcy4598/MNIST/raw/train-images-idx3-ubyte.gz to /tmp/tmpydcy4598/MNIST/raw
(RayTrainWorker pid=64102) 
(RayTrainWorker pid=64102) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=64101) 
(RayTrainWorker pid=64101)   | Name     | Type               | Params
(RayTrainWorker pid=64101) ------------------------------------------------
(RayTrainWorker pid=64101) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=64101) 1 | layer_1  | Linear             | 50.2 K
(RayTrainWorker pid=64101) 2 | layer_2  | Linear             | 16.6 K
(RayTrainWorker pid=64101) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=64101) ------------------------------------------------
(RayTrainWorker pid=64101) 69.5 K    Trainable params
(RayTrainWorker pid=64101) 0         Non-trainable params
(RayTrainWorker pid=64101) 69.5 K    Total params
(RayTrainWorker pid=64101) 0.278     Total estimated model params size (MB)
(RayTrainWorker pid=64102) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(autoscaler +7m33s) [autoscaler] Current infeasible resource requests: {"resourcesBundle":{"bundle_group_289661bddaad4820732f117e33d702000000":0.001}}, {"resourcesBundle":{"bundle_group_d14ed93ffcb267f77984fc5e097c02000000":0.001}}, {"resourcesBundle":{"bundle_group_9d0f0584af89d9185ad87362359402000000":0.001}}, {"resourcesBundle":{"bundle_group_b8fdebe2246b003d6e5d0451465b02000000":0.001}}, {"resourcesBundle":{"bundle_group_35d0a11b5707ef020363a907e5fc02000000":0.001}}, {"resourcesBundle":{"bundle_group_ba2b3c448809cad351fc7dc545a402000000":0.001}}, {"resourcesBundle":{"bundle_group_05283c0cbfbb775ad68aacf47bc702000000":0.001}}, {"resourcesBundle":{"bundle_group_2cd0e3d931d1e356a1ab0f3afb6a02000000":0.001}}, {"resourcesBundle":{"bundle_group_14f2bd9329dfcde35c77e8474b0f02000000":0.001}}
(RayTrainWorker pid=64102) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=64103) 2023-09-07 13:58:50.448640: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=64103) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64101) 2023-09-07 13:58:50.555450: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=64101) 2023-09-07 13:58:51.317611: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=64101) 2023-09-07 13:58:51.317618: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=64101) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 42147187.54it/s] [repeated 11x across cluster]
(RayTrainWorker pid=64101) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=64101) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=64102) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=64102) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=71294) 2023-09-07 13:59:19.340985: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=71294) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=64101) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00000_0_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0316_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=71294) 2023-09-07 13:59:19.479380: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=71294) 2023-09-07 13:59:20.227539: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=71294) 2023-09-07 13:59:20.227616: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=71294) 2023-09-07 13:59:20.227623: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=71294) Starting distributed worker processes: ['71407 (10.0.0.84)', '71408 (10.0.0.84)', '71409 (10.0.0.84)']
(RayTrainWorker pid=71407) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=71408) 2023-09-07 13:59:26.852631: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=71408) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71407) 2023-09-07 13:59:26.854221: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=71407) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71408) 2023-09-07 13:59:26.986178: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=71408) 2023-09-07 13:59:27.752593: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=71408) 2023-09-07 13:59:27.752672: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=71408) 2023-09-07 13:59:27.752679: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=71407) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=71407)   rank_zero_warn(
(RayTrainWorker pid=71407) GPU available: True, used: True
(RayTrainWorker pid=71407) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=71407) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=71407) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=71408) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=71408) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=64101) Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/tmpt8k8jglf/MNIST/raw/t10k-labels-idx1-ubyte.gz [repeated 11x across cluster]
(RayTrainWorker pid=64101) Extracting /tmp/tmpt8k8jglf/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpt8k8jglf/MNIST/raw [repeated 11x across cluster]
(RayTrainWorker pid=64101)  [repeated 11x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 100664900.56it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 86590268.41it/s]
(RayTrainWorker pid=71408) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=71407)   | Name     | Type               | Params
(RayTrainWorker pid=71407) ------------------------------------------------
(RayTrainWorker pid=71407) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=71407) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=71407) 2 | layer_2  | Linear             | 8.3 K 
(RayTrainWorker pid=71407) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=71407) ------------------------------------------------
(RayTrainWorker pid=71407) 109 K     Trainable params
(RayTrainWorker pid=71407) 0         Non-trainable params
(RayTrainWorker pid=71407) 109 K     Total params
(RayTrainWorker pid=71407) 0.438     Total estimated model params size (MB)
(RayTrainWorker pid=71407) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=71408) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=71409) 2023-09-07 13:59:26.851614: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=71409) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71409) 2023-09-07 13:59:26.986178: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=71409) 2023-09-07 13:59:27.752674: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=71409) 2023-09-07 13:59:27.752681: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(TrainTrainable pid=73540) 2023-09-07 13:59:38.336002: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=73540) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=71409) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 23461242.33it/s] [repeated 11x across cluster]
(RayTrainWorker pid=71407)  [repeated 5x across cluster]
(RayTrainWorker pid=71409) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=71408) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=71409) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00001_1_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0839_2023-09-07_13-58-38/checkpoint_000000) [repeated 2x across cluster]
(TrainTrainable pid=73540) 2023-09-07 13:59:38.476177: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=73540) 2023-09-07 13:59:39.222782: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 2x across cluster]
(TrainTrainable pid=73540) 2023-09-07 13:59:39.222788: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=73540) Starting distributed worker processes: ['73647 (10.0.0.84)', '73648 (10.0.0.84)', '73649 (10.0.0.84)']
(RayTrainWorker pid=73647) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=73648) 2023-09-07 13:59:45.901023: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=73648) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.041760: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=73649) 2023-09-07 13:59:45.964229: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=73649) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.807096: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.807173: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=73648) 2023-09-07 13:59:46.807180: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=73648) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=73647) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=73647)   rank_zero_warn(
(RayTrainWorker pid=73647) GPU available: True, used: True
(RayTrainWorker pid=73647) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=73647) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=73647) HPU available: False, using: 0 HPUs
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 88411180.44it/s]
 60%|█████▉    | 5931008/9912422 [00:00<00:00, 57942493.14it/s]
(RayTrainWorker pid=73648) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=73648) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpcy67mfe_/MNIST/raw/train-images-idx3-ubyte.gz [repeated 13x across cluster]
(RayTrainWorker pid=71409) Extracting /tmp/tmpmxchio03/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpmxchio03/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=71409)  [repeated 12x across cluster]
(RayTrainWorker pid=73648) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=73647)   | Name     | Type               | Params
(RayTrainWorker pid=73647) ------------------------------------------------
(RayTrainWorker pid=73647) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=73647) 1 | layer_1  | Linear             | 50.2 K
(RayTrainWorker pid=73647) 2 | layer_2  | Linear             | 16.6 K
(RayTrainWorker pid=73647) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=73647) ------------------------------------------------
(RayTrainWorker pid=73647) 69.5 K    Trainable params
(RayTrainWorker pid=73647) 0         Non-trainable params
(RayTrainWorker pid=73647) 69.5 K    Total params
(RayTrainWorker pid=73647) 0.278     Total estimated model params size (MB)
(RayTrainWorker pid=73648) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=73648) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=73647) 2023-09-07 13:59:46.102948: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=73647) 2023-09-07 13:59:45.969366: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=73647) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=73647) 2023-09-07 13:59:46.898646: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=73647) 2023-09-07 13:59:46.898654: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=73647) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 45575427.67it/s] [repeated 11x across cluster]
(RayTrainWorker pid=73647)  [repeated 4x across cluster]
(RayTrainWorker pid=73647) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=73647) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=73648) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=73648) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=80840) 2023-09-07 14:00:14.333330: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=80840) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(TrainTrainable pid=80840) 2023-09-07 14:00:14.472277: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=73647) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00002_2_batch_size=32,layer_1_size=64,layer_2_size=256,lr=0.0002_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=80840) 2023-09-07 14:00:15.216259: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=80840) 2023-09-07 14:00:15.216329: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=80840) 2023-09-07 14:00:15.216336: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=80840) Starting distributed worker processes: ['80950 (10.0.0.84)', '80951 (10.0.0.84)', '80952 (10.0.0.84)']
(RayTrainWorker pid=80950) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=80950) 2023-09-07 14:00:21.817341: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=80950) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80951) 2023-09-07 14:00:21.817340: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=80951) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80950) 2023-09-07 14:00:21.952950: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=80950) 2023-09-07 14:00:22.721445: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=80950) 2023-09-07 14:00:22.721524: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=80950) 2023-09-07 14:00:22.721531: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=80950) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=80950)   rank_zero_warn(
(RayTrainWorker pid=80950) GPU available: True, used: True
(RayTrainWorker pid=80950) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=80950) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=80950) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=80950) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=80950) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=80950) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpdj6sv23q/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=73647) Extracting /tmp/tmpjm0jv6rr/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpjm0jv6rr/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=73647)  [repeated 12x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 120421348.01it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 111998101.50it/s]
(RayTrainWorker pid=80950) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=80950)   | Name     | Type               | Params
(RayTrainWorker pid=80950) ------------------------------------------------
(RayTrainWorker pid=80950) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=80950) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=80950) 2 | layer_2  | Linear             | 8.3 K 
(RayTrainWorker pid=80950) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=80950) ------------------------------------------------
(RayTrainWorker pid=80950) 109 K     Trainable params
(RayTrainWorker pid=80950) 0         Non-trainable params
(RayTrainWorker pid=80950) 109 K     Total params
(RayTrainWorker pid=80950) 0.438     Total estimated model params size (MB)
(RayTrainWorker pid=80950) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=80950) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=80952) 2023-09-07 14:00:21.817339: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=80952) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80952) 2023-09-07 14:00:21.952959: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=80952) 2023-09-07 14:00:22.721494: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=80952) 2023-09-07 14:00:22.721502: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=80952) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 39279440.76it/s] [repeated 11x across cluster]
(RayTrainWorker pid=80950) 
(RayTrainWorker pid=80952) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=80952) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=80950) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/checkpoint_000003) [repeated 9x across cluster]
(TrainTrainable pid=88077) 2023-09-07 14:00:43.334099: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=88077) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=80952) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00003_3_batch_size=64,layer_1_size=128,layer_2_size=64,lr=0.0011_2023-09-07_13-58-38/checkpoint_000004) [repeated 5x across cluster]
(TrainTrainable pid=88077) 2023-09-07 14:00:43.474522: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=88077) 2023-09-07 14:00:44.217911: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=88077) 2023-09-07 14:00:44.217986: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=88077) 2023-09-07 14:00:44.217994: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=88077) Starting distributed worker processes: ['88184 (10.0.0.84)', '88185 (10.0.0.84)', '88186 (10.0.0.84)']
(RayTrainWorker pid=88184) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=88186) 2023-09-07 14:00:50.980950: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=88186) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88185) 2023-09-07 14:00:50.969448: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=88185) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.106653: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.878087: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.878157: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=88186) 2023-09-07 14:00:51.878165: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=88186) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=88184) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=88184)   rank_zero_warn(
(RayTrainWorker pid=88184) GPU available: True, used: True
(RayTrainWorker pid=88184) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=88184) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=88184) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=88186) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=88186) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpd1qkzrfz/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=80951) Extracting /tmp/tmpyrcbok27/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpyrcbok27/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=80951)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 135946084.34it/s]
 61%|██████▏   | 6094848/9912422 [00:00<00:00, 60581952.53it/s]
(RayTrainWorker pid=88186) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=88184)   | Name     | Type               | Params
(RayTrainWorker pid=88184) ------------------------------------------------
(RayTrainWorker pid=88184) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=88184) 1 | layer_1  | Linear             | 25.1 K
(RayTrainWorker pid=88184) 2 | layer_2  | Linear             | 4.2 K 
(RayTrainWorker pid=88184) 3 | layer_3  | Linear             | 1.3 K 
(RayTrainWorker pid=88184) ------------------------------------------------
(RayTrainWorker pid=88184) 30.6 K    Trainable params
(RayTrainWorker pid=88184) 0         Non-trainable params
(RayTrainWorker pid=88184) 30.6 K    Total params
(RayTrainWorker pid=88184) 0.123     Total estimated model params size (MB)
(RayTrainWorker pid=88186) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=88186) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=88184) 2023-09-07 14:00:50.969450: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=88184) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88184) 2023-09-07 14:00:51.106653: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=88184) 2023-09-07 14:00:51.876301: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=88184) 2023-09-07 14:00:51.876309: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=88184) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 47154774.18it/s] [repeated 11x across cluster]
(RayTrainWorker pid=88184)  [repeated 2x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 87231776.04it/s]
(RayTrainWorker pid=88184) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=88184) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=88186) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=88186) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=95388) 2023-09-07 14:01:20.343383: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=95388) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=88184) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00004_4_batch_size=32,layer_1_size=32,layer_2_size=128,lr=0.0011_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=95388) 2023-09-07 14:01:20.484476: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=95388) 2023-09-07 14:01:21.230226: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=95388) 2023-09-07 14:01:21.230300: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=95388) 2023-09-07 14:01:21.230307: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=95388) Starting distributed worker processes: ['95492 (10.0.0.84)', '95493 (10.0.0.84)', '95494 (10.0.0.84)']
(RayTrainWorker pid=95492) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=95494) 2023-09-07 14:01:27.861861: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=95494) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95492) 2023-09-07 14:01:27.861862: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=95492) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95494) 2023-09-07 14:01:27.995553: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=95494) 2023-09-07 14:01:28.761910: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=95494) 2023-09-07 14:01:28.761983: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=95494) 2023-09-07 14:01:28.761990: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=95492) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=95492)   rank_zero_warn(
(RayTrainWorker pid=95492) GPU available: True, used: True
(RayTrainWorker pid=95492) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=95492) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=95492) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=95492) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=95494) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=95494) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpkvf1rrst/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=88184) Extracting /tmp/tmppk4zrz1w/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmppk4zrz1w/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=88184)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 117459779.70it/s]
 74%|███████▍  | 7372800/9912422 [00:00<00:00, 73213483.02it/s]
(RayTrainWorker pid=95494) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=95492)   | Name     | Type               | Params
(RayTrainWorker pid=95492) ------------------------------------------------
(RayTrainWorker pid=95492) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=95492) 1 | layer_1  | Linear             | 50.2 K
(RayTrainWorker pid=95492) 2 | layer_2  | Linear             | 4.2 K 
(RayTrainWorker pid=95492) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=95492) ------------------------------------------------
(RayTrainWorker pid=95492) 55.1 K    Trainable params
(RayTrainWorker pid=95492) 0         Non-trainable params
(RayTrainWorker pid=95492) 55.1 K    Total params
(RayTrainWorker pid=95492) 0.220     Total estimated model params size (MB)
(RayTrainWorker pid=95494) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=95494) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=95493) 2023-09-07 14:01:27.861861: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=95493) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95493) 2023-09-07 14:01:27.995552: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=95493) 2023-09-07 14:01:28.758718: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=95493) 2023-09-07 14:01:28.758742: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=95494) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 48598287.67it/s] [repeated 10x across cluster]
(RayTrainWorker pid=95492)  [repeated 4x across cluster]
(RayTrainWorker pid=95493) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=95493) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=95494) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(TrainTrainable pid=101434) 2023-09-07 14:01:53.326795: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=101434) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=95493) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00005_5_batch_size=32,layer_1_size=64,layer_2_size=64,lr=0.0092_2023-09-07_13-58-38/checkpoint_000003) [repeated 5x across cluster]
(TrainTrainable pid=101434) 2023-09-07 14:01:53.463803: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=101434) 2023-09-07 14:01:54.201636: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=101434) 2023-09-07 14:01:54.201711: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=101434) 2023-09-07 14:01:54.201718: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=101434) Starting distributed worker processes: ['101544 (10.0.0.84)', '101545 (10.0.0.84)', '101546 (10.0.0.84)']
(RayTrainWorker pid=101544) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=101545) 2023-09-07 14:02:00.834273: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=101545) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101544) 2023-09-07 14:02:00.834274: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=101544) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101545) 2023-09-07 14:02:00.968155: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=101545) 2023-09-07 14:02:01.736107: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=101545) 2023-09-07 14:02:01.736184: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=101545) 2023-09-07 14:02:01.736191: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=101545) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=101544) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=101544)   rank_zero_warn(
(RayTrainWorker pid=101544) GPU available: True, used: True
(RayTrainWorker pid=101544) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=101544) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=101544) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=101545) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=95492) Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/tmpyy7a6r11/MNIST/raw/t10k-labels-idx1-ubyte.gz [repeated 11x across cluster]
(RayTrainWorker pid=95492) Extracting /tmp/tmpyy7a6r11/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpyy7a6r11/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=95492)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 104607984.65it/s]
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/train-images-idx3-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/train-labels-idx1-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/t10k-images-idx3-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) Extracting /tmp/tmpxobpdr_p/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpxobpdr_p/MNIST/raw
(RayTrainWorker pid=101545) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=101544)   | Name     | Type               | Params
(RayTrainWorker pid=101544) ------------------------------------------------
(RayTrainWorker pid=101544) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=101544) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=101544) 2 | layer_2  | Linear             | 33.0 K
(RayTrainWorker pid=101544) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=101544) ------------------------------------------------
(RayTrainWorker pid=101544) 136 K     Trainable params
(RayTrainWorker pid=101544) 0         Non-trainable params
(RayTrainWorker pid=101544) 136 K     Total params
(RayTrainWorker pid=101544) 0.544     Total estimated model params size (MB)
(RayTrainWorker pid=101545) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=101545) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=101546) 2023-09-07 14:02:00.834275: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=101546) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101546) 2023-09-07 14:02:00.968160: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=101546) 2023-09-07 14:02:01.736182: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=101546) 2023-09-07 14:02:01.736190: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=101546) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 38642046.18it/s] [repeated 11x across cluster]
(RayTrainWorker pid=101544)  [repeated 3x across cluster]
(RayTrainWorker pid=101546) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=101544) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=101545) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=101545) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
(TrainTrainable pid=108750) 2023-09-07 14:02:30.387715: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=108750) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=101546) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00006_6_batch_size=32,layer_1_size=128,layer_2_size=256,lr=0.0033_2023-09-07_13-58-38/checkpoint_000004) [repeated 2x across cluster]
(TrainTrainable pid=108750) 2023-09-07 14:02:30.526490: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=108750) 2023-09-07 14:02:31.271200: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=108750) 2023-09-07 14:02:31.271270: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=108750) 2023-09-07 14:02:31.271277: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=108750) Starting distributed worker processes: ['108861 (10.0.0.84)', '108862 (10.0.0.84)', '108863 (10.0.0.84)']
(RayTrainWorker pid=108861) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.000239: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=108862) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108863) 2023-09-07 14:02:38.000240: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=108863) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.137493: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.911788: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.911870: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=108862) 2023-09-07 14:02:38.911877: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=108861) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=108861)   rank_zero_warn(
(RayTrainWorker pid=108861) GPU available: True, used: True
(RayTrainWorker pid=108861) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=108861) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=108861) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=108862) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=108863) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=101546) Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/tmpt_if2tuu/MNIST/raw/t10k-labels-idx1-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=101546) Extracting /tmp/tmpt_if2tuu/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpt_if2tuu/MNIST/raw [repeated 8x across cluster]
(RayTrainWorker pid=101546)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 111226266.99it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 89971437.39it/s]
(RayTrainWorker pid=108862) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=108861)   | Name     | Type               | Params
(RayTrainWorker pid=108861) ------------------------------------------------
(RayTrainWorker pid=108861) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=108861) 1 | layer_1  | Linear             | 25.1 K
(RayTrainWorker pid=108861) 2 | layer_2  | Linear             | 2.1 K 
(RayTrainWorker pid=108861) 3 | layer_3  | Linear             | 650   
(RayTrainWorker pid=108861) ------------------------------------------------
(RayTrainWorker pid=108861) 27.9 K    Trainable params
(RayTrainWorker pid=108861) 0         Non-trainable params
(RayTrainWorker pid=108861) 27.9 K    Total params
(RayTrainWorker pid=108861) 0.112     Total estimated model params size (MB)
(RayTrainWorker pid=108862) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=108862) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.000239: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=108861) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.137493: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.911832: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=108861) 2023-09-07 14:02:38.911839: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=108861) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 42054147.39it/s] [repeated 11x across cluster]
(autoscaler +11m23s) [workspace snapshot] New snapshot created successfully (Size: 327.01 KB)
(TrainTrainable pid=111019) 2023-09-07 14:02:51.352608: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=111019) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=108861)  [repeated 3x across cluster]
(RayTrainWorker pid=108861) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=108861) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=108861) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00007_7_batch_size=32,layer_1_size=32,layer_2_size=64,lr=0.0001_2023-09-07_13-58-38/checkpoint_000000) [repeated 2x across cluster]
(TrainTrainable pid=111019) 2023-09-07 14:02:51.493509: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=111019) 2023-09-07 14:02:52.239731: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=111019) 2023-09-07 14:02:52.239805: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=111019) 2023-09-07 14:02:52.239812: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=111019) Starting distributed worker processes: ['111129 (10.0.0.84)', '111130 (10.0.0.84)', '111131 (10.0.0.84)']
(RayTrainWorker pid=111129) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=111131) 2023-09-07 14:02:58.909958: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=111131) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111130) 2023-09-07 14:02:58.910530: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=111130) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.041760: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.809607: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.809682: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=111131) 2023-09-07 14:02:59.809690: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=111129) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=111129)   rank_zero_warn(
(RayTrainWorker pid=111129) GPU available: True, used: True
(RayTrainWorker pid=111129) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=111129) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=111129) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=111131) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=111131) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=111131) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmpddnnc0iv/MNIST/raw/train-images-idx3-ubyte.gz [repeated 13x across cluster]
(RayTrainWorker pid=108863) Extracting /tmp/tmpxcg0v86z/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpxcg0v86z/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=108863)  [repeated 12x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 109686001.97it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 81254614.76it/s]
100%|██████████| 1648877/1648877 [00:00<00:00, 35741410.23it/s]
(RayTrainWorker pid=111131) LOCAL_RANK: 2 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=111129)   | Name     | Type               | Params
(RayTrainWorker pid=111129) ------------------------------------------------
(RayTrainWorker pid=111129) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=111129) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=111129) 2 | layer_2  | Linear             | 33.0 K
(RayTrainWorker pid=111129) 3 | layer_3  | Linear             | 2.6 K 
(RayTrainWorker pid=111129) ------------------------------------------------
(RayTrainWorker pid=111129) 136 K     Trainable params
(RayTrainWorker pid=111129) 0         Non-trainable params
(RayTrainWorker pid=111129) 136 K     Total params
(RayTrainWorker pid=111129) 0.544     Total estimated model params size (MB)
(RayTrainWorker pid=111131) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=111131) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=111129) 2023-09-07 14:02:58.906403: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=111129) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111129) 2023-09-07 14:02:59.041757: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=111129) 2023-09-07 14:02:59.809306: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=111129) 2023-09-07 14:02:59.809314: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=111129) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 37135533.66it/s] [repeated 11x across cluster]
100%|██████████| 9912422/9912422 [00:00<00:00, 92298990.88it/s]
(RayTrainWorker pid=111129)  [repeated 2x across cluster]
(RayTrainWorker pid=111129) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=111129) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=111131) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000003) [repeated 9x across cluster]
(TrainTrainable pid=118255) 2023-09-07 14:03:20.351292: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(TrainTrainable pid=118255) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=111129) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000004) [repeated 5x across cluster]
(TrainTrainable pid=118255) 2023-09-07 14:03:20.492641: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(TrainTrainable pid=118255) 2023-09-07 14:03:21.239037: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=118255) 2023-09-07 14:03:21.239106: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(TrainTrainable pid=118255) 2023-09-07 14:03:21.239113: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(TorchTrainer pid=118255) Starting distributed worker processes: ['118362 (10.0.0.84)', '118363 (10.0.0.84)', '118364 (10.0.0.84)']
(RayTrainWorker pid=118362) Setting up process group for: env:// [rank=0, world_size=3]
(RayTrainWorker pid=118363) 2023-09-07 14:03:27.930188: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=118363) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=118364) 2023-09-07 14:03:27.917602: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=118364) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.052415: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.822569: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.822644: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
(RayTrainWorker pid=118363) 2023-09-07 14:03:28.822652: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
(RayTrainWorker pid=118363) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/lightning_logs
(RayTrainWorker pid=118362) /home/ray/anaconda3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:92: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`.
(RayTrainWorker pid=118362)   rank_zero_warn(
(RayTrainWorker pid=118362) GPU available: True, used: True
(RayTrainWorker pid=118362) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=118362) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=118362) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=118364) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=118364) Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/tmp0sbwiedt/MNIST/raw/train-images-idx3-ubyte.gz [repeated 12x across cluster]
(RayTrainWorker pid=111130) Extracting /tmp/tmpfmuq9_qh/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/tmpfmuq9_qh/MNIST/raw [repeated 12x across cluster]
(RayTrainWorker pid=111130)  [repeated 12x across cluster]
  0%|          | 0/9912422 [00:00<?, ?it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 109752309.17it/s]
100%|██████████| 9912422/9912422 [00:00<00:00, 92575620.67it/s]
(RayTrainWorker pid=118363) LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1,2]
(RayTrainWorker pid=118362)   | Name     | Type               | Params
(RayTrainWorker pid=118362) ------------------------------------------------
(RayTrainWorker pid=118362) 0 | accuracy | MulticlassAccuracy | 0     
(RayTrainWorker pid=118362) 1 | layer_1  | Linear             | 100 K 
(RayTrainWorker pid=118362) 2 | layer_2  | Linear             | 16.5 K
(RayTrainWorker pid=118362) 3 | layer_3  | Linear             | 1.3 K 
(RayTrainWorker pid=118362) ------------------------------------------------
(RayTrainWorker pid=118362) 118 K     Trainable params
(RayTrainWorker pid=118362) 0         Non-trainable params
(RayTrainWorker pid=118362) 118 K     Total params
(RayTrainWorker pid=118362) 0.473     Total estimated model params size (MB)
(RayTrainWorker pid=118363) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
(RayTrainWorker pid=118363) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/checkpoint_000000)
(RayTrainWorker pid=118362) 2023-09-07 14:03:27.912682: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
(RayTrainWorker pid=118362) To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
(RayTrainWorker pid=118362) 2023-09-07 14:03:28.050355: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. [repeated 2x across cluster]
(RayTrainWorker pid=118362) 2023-09-07 14:03:28.816159: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 [repeated 4x across cluster]
(RayTrainWorker pid=118362) 2023-09-07 14:03:28.816166: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly. [repeated 2x across cluster]
(RayTrainWorker pid=118362) Missing logger folder: /home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/lightning_logs [repeated 2x across cluster]
100%|██████████| 4542/4542 [00:00<00:00, 42810177.01it/s] [repeated 11x across cluster]
(RayTrainWorker pid=118362)  [repeated 4x across cluster]
(RayTrainWorker pid=118362) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2] [repeated 2x across cluster]
(RayTrainWorker pid=118362) [W reducer.cpp:1300] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration,  which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator()) [repeated 2x across cluster]
(RayTrainWorker pid=118363) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/checkpoint_000002) [repeated 6x across cluster]
(RayTrainWorker pid=118363) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00009_9_batch_size=32,layer_1_size=128,layer_2_size=128,lr=0.0040_2023-09-07_13-58-38/checkpoint_000004) [repeated 6x across cluster]
2023-09-07 14:03:52,186	INFO tune.py:1143 -- Total run time: 313.94 seconds (313.92 seconds for the tuning loop).
results.get_best_result(metric="ptl/val_accuracy", mode="max")
Result(
  metrics={'ptl/train_loss': 0.00108961365185678, 'ptl/train_accuracy': 1.0, 'ptl/val_loss': 0.05798737704753876, 'ptl/val_accuracy': 0.9820601940155029, 'epoch': 4, 'step': 1435},
  path='/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38',
  filesystem='local',
  checkpoint=Checkpoint(filesystem=local, path=/home/ray/ray_results/TorchTrainer_2023-09-07_13-58-38/TorchTrainer_5144b_00008_8_batch_size=64,layer_1_size=128,layer_2_size=256,lr=0.0037_2023-09-07_13-58-38/checkpoint_000004)
)

在上述示例中,Tune进行了10次试验,使用了不同的超参数配置。

如您在training_iteration列中所见,具有高损失(和低准确率)的试验被提前终止。表现最好的试验使用了 batch_size=64layer_1_size=128layer_2_size=256,以及lr=0.0037

更多 PyTorch Lightning 示例#