使用 Ray Train、PyTorch Lightning 和 FSDP 微调 dolly-v2-7b
#
在这个示例中,我们演示如何使用 Ray Train 对 dolly-v2-7b
模型进行微调。dolly-v2-7b
是一个具有 70 亿参数的因果语言模型,由 Databricks 创建,源自 EleutherAI 的 Pythia-6.9b,并在一个 ~15K 条记录的指令语料库 上进行了微调。
我们从 HuggingFace 模型库加载预训练模型到 LightningModule,并借助 Ray TorchTrainer
启动一个跨 16 个 T4 GPU 的 FSDP 微调任务。以类似的方式微调其他相似的大型语言模型也是非常简单的,如本示例所示。
在开始本示例之前,我们强烈建议阅读 Ray Train 关键概念 和 Ray 数据快速入门。
设置 Ray 集群#
在这个示例中,我们使用了一个配备 g4dn.8xlarge
主节点和 15 个 g4dn.4xlarge
工作节点的 Ray 集群。每个实例都有一个 Tesla T4 GPU(16GiB 内存)。
我们定义了一个 runtime_env
,在每个节点上安装必要的 Python 库。如果您已经在工作节点的基础映像中安装了所有所需的包,可以跳过此步骤。我们使用 lightning==2.0.2
和 transformers==4.29.2
测试了这个示例。
import ray
ray.init(
runtime_env={
"pip": [
"datasets",
"evaluate",
"transformers>=4.26.0",
"torch>=1.12.0",
"lightning>=2.0",
]
}
)
MODEL_NAME = "databricks/dolly-v2-7b"
准备数据#
我们使用 tiny_shakespeare 进行微调,包含来自多部莎士比亚剧作的 40,000 行莎士比亚的作品。该数据集在 Andrej Karpathy 的博客文章 ‘递归神经网络的非凡有效性’ 中有所介绍。
数据集示例:
BAPTISTA:
我很了解他:你为了他的缘故欢迎光临。
GREMIO:
在你叙述之前,佩特鲁基奥, 请让我请求,
让我们这些穷苦的请求者也说说:
真是太让人惊讶了!你真是太过主动。
PETRUCHIO:
哦,原谅我,格雷米奥先生;我真想有所作为。
在这里,我们采用了来自另一个示例的类似预处理逻辑:GPT-J-6B 微调与 Ray Train 和 DeepSpeed。
import ray
import pandas as pd
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
def split_text(batch: pd.DataFrame) -> pd.DataFrame:
text = list(batch["text"])
flat_text = "".join(text)
split_text = [
x.strip()
for x in flat_text.split("\n")
if x.strip() and not x.strip()[-1] == ":"
]
return pd.DataFrame(split_text, columns=["text"])
def tokenize(batch: pd.DataFrame) -> dict:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
ret = tokenizer(
list(batch["text"]),
truncation=True,
max_length=256,
padding="max_length",
return_tensors="np",
)
ret["labels"] = ret["input_ids"].copy()
return dict(ret)
hf_dataset = load_dataset("tiny_shakespeare")
train_ds = ray.data.from_huggingface(hf_dataset["train"])
我们首先将原始段落拆分成多个句子,然后对它们进行分词。以下是一些示例:
# 首先将数据集分割成多个句子。
train_ds = train_ds.map_batches(split_text, batch_format="pandas")
train_ds.take(10)
2023-08-30 11:03:12,182 INFO dataset.py:2380 -- Tip: Use `take_batch()` instead of `take() / show()` to return records in pandas or numpy batch format.
2023-08-30 11:03:12,185 INFO streaming_executor.py:93 -- Executing DAG InputDataBuffer[Input] -> TaskPoolMapOperator[MapBatches(split_text)] -> LimitOperator[limit=10]
2023-08-30 11:03:12,186 INFO streaming_executor.py:94 -- Execution config: ExecutionOptions(resource_limits=ExecutionResources(cpu=None, gpu=None, object_store_memory=None), locality_with_output=False, preserve_order=False, actor_locality_enabled=True, verbose_progress=False)
2023-08-30 11:03:12,187 INFO streaming_executor.py:96 -- Tip: For detailed progress reporting, run `ray.data.DataContext.get_current().execution_options.verbose_progress = True`
[{'text': 'Before we proceed any further, hear me speak.'},
{'text': 'Speak, speak.'},
{'text': 'You are all resolved rather to die than to famish?'},
{'text': 'Resolved. resolved.'},
{'text': 'First, you know Caius Marcius is chief enemy to the people.'},
{'text': "We know't, we know't."},
{'text': "Let us kill him, and we'll have corn at our own price."},
{'text': "Is't a verdict?"},
{'text': "No more talking on't; let it be done: away, away!"},
{'text': 'One word, good citizens.'}]
# 然后对数据集进行分词处理。
train_ds = train_ds.map_batches(tokenize, batch_format="pandas")
定义你的光闪模型#
在这个例子中,我们使用dolly-v2-7b模型进行微调。这是一个遵循指令的大型语言模型,在Databricks机器学习平台上训练,已获得商业使用许可。我们从Huggingface模型库加载模型权重,并将其封装到pl.LightningModule
中。
备注
确保将FSDP包装模型的参数self.trainer.model.parameters()
传递给优化器,而不是self.model.parameters()
。
import torch
import lightning.pytorch as pl
class DollyV2Model(pl.LightningModule):
def __init__(self, lr=2e-5, eps=1e-8):
super().__init__()
self.save_hyperparameters()
self.lr = lr
self.eps = eps
self.model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
def forward(self, batch):
outputs = self.model(
batch["input_ids"],
attention_mask=batch["attention_mask"],
labels=batch["labels"]
)
return outputs.loss
def training_step(self, batch, batch_idx):
loss = self.forward(batch)
self.log("train_loss", loss, prog_bar=True, on_step=True)
return loss
def configure_optimizers(self):
if self.global_rank == 0:
print(self.trainer.model)
return torch.optim.AdamW(self.trainer.model.parameters(), lr=self.lr, eps=self.eps)
配置你的 FSDP 策略#
由于 dolly-v2-7b
是一个相对较大的模型,它无法被正确地放入单个商业 GPU。在这个例子中,我们使用 FSDP 策略在多个工作节点之间切分模型参数。这使我们可以避免 GPU 内存溢出问题,并支持更大的全局批量大小。
图片来源:完全分片数据并行:用更少的 GPU 更快地进行 AI 训练
备注
FSDP 是一种数据并行方法,它在 DDP 排序中分片模型参数、优化器状态和梯度。这是受到 Xu 等人的启发,以及 DeepSpeed 的 ZeRO 阶段 3。你可以参考以下博客获取更多信息:
要使用 Lightning 的 FSDPStrategy 开始训练,你只需创建一个具有相同初始化参数的 RayFSDPStrategy
。
import functools
import lightning.pytorch as pl
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.distributed.fsdp import ShardingStrategy, BackwardPrefetch
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXLayer
from ray.train.lightning import RayFSDPStrategy
# 定义模型分片策略:
# 将每个 GPTNeoXLayer 包装为其自身的 FSDP 实例
auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls = {GPTNeoXLayer}
)
fsdp_strategy = RayFSDPStrategy(
sharding_strategy=ShardingStrategy.FULL_SHARD,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
forward_prefetch=True,
auto_wrap_policy=auto_wrap_policy,
limit_all_gathers=True,
activation_checkpointing=[GPTNeoXLayer],
)
小技巧
FSDP 配置的一些提示:
sharding_strategy
:ShardingStrategy.NO_SHARD
: 参数、梯度和优化器状态不被分片。类似于 DDP。ShardingStrategy.SHARD_GRAD_OP
: 在计算过程中,梯度和优化器状态被分片,并且参数在计算外被分片。类似于 ZeRO 阶段 2。ShardingStrategy.FULL_SHARD
: 参数、梯度和优化器状态都被分片。在这三种选项中,它的内存使用最低。类似于 ZeRO 阶段 3。
auto_wrap_policy
:模型层通常以分层方式使用 FSDP 进行包装。这意味着在前向或反向计算期间,只有单个 FSDP 实例中的层需要将所有参数聚合到单个设备上。
使用
transformer_auto_wrap_policy
自动将每个 Transformer 块包装成一个单独的 FSDP 实例。
backward_prefetch
和forward_prefetch
:在执行当前的前向/反向传递时重叠即将到来的全聚合。这可以提高吞吐量,但可能会稍微增加峰值内存使用。
使用 Ray TorchTrainer 微调#
Ray TorchTrainer 允许您在多个节点上扩展您的 PyTorch Lightning 训练工作负载。有关更多详细信息,请参见 配置规模和 GPU。
num_workers = 16
batch_size_per_worker = 10
此外,请记得定义一个 Lightning 回调,它保存并报告检查点。Ray Train 提供了一个简单的实现,RayTrainReportCallback()
,它将在每个训练纪元结束时将您的检查点和指标保存在远程存储中。
请注意,您也可以实现自己的报告回调,使用自定义的逻辑,例如保存自定义检查点文件或以不同的频率报告。
from ray.train import Checkpoint
from ray.train.lightning import RayLightningEnvironment, RayTrainReportCallback, prepare_trainer
# 每个工人的培训职能
def train_func(config):
lr = config["lr"]
eps = config["eps"]
strategy = config["strategy"]
batch_size_per_worker = config["batch_size_per_worker"]
# 模型
model = DollyV2Model(lr=lr, eps=eps)
# 射线数据摄取
train_ds = ray.train.get_dataset_shard("train")
train_dataloader = train_ds.iter_torch_batches(batch_size=batch_size_per_worker)
# 闪电训练师
trainer = pl.Trainer(
max_epochs=1,
devices="auto",
accelerator="auto",
precision="16-mixed",
strategy=strategy,
plugins=[RayLightningEnvironment()],
callbacks=[RayTrainReportCallback()],
enable_checkpointing=False,
)
trainer = prepare_trainer(trainer)
trainer.fit(model, train_dataloaders=train_dataloader)
备注
由于此示例在多个节点上运行,我们需要将检查点和其他输出持久化到某个外部存储,以便在训练完成后访问。
您应该设置云存储或NFS,然后将 storage_path
替换为您自己的云存储桶URI或NFS路径。
有关更多详细信息,请参见 存储指南。
storage_path="s3://your-bucket-here" # 待办事项:设置云存储
# storage_path="/mnt/path/to/nfs" # TODO: Alternatively, set up NFS
from ray.train.torch import TorchTrainer
from ray.train import RunConfig, ScalingConfig, CheckpointConfig
# 根据验证集上的表现保存Ray Train检查点
run_config = RunConfig(
name="finetune_dolly-v2-7b",
storage_path=storage_path,
checkpoint_config=CheckpointConfig(num_to_keep=1),
)
# 将FSDP训练工作负载扩展到16个GPU
# 您可以根据自己的计算资源更改此配置。
scaling_config = ScalingConfig(
num_workers=num_workers, use_gpu=True, trainer_resources={"memory": 100 * 1024 ** 3}
)
# 传递给 train_func 的配置
train_config = {
"lr": 2e-5,
"eps": 1e-8,
"strategy": fsdp_strategy,
"batch_size_per_worker": 10
}
# 定义一个TorchTrainer并启动你的训练任务
ray_trainer = TorchTrainer(
train_func,
train_loop_config=train_config,
run_config=run_config,
scaling_config=scaling_config,
datasets={"train": train_ds},
)
result = ray_trainer.fit()
result
Tune Status
Current time: | 2023-08-30 11:51:22 |
Running for: | 00:47:57.19 |
Memory: | 39.3/124.3 GiB |
System Info
Using FIFO scheduling algorithm.Logical resource usage: 193.0/272 CPUs, 16.0/16 GPUs (0.0/16.0 accelerator_type:None)
Trial Status
Trial name | status | loc | iter | total time (s) | train_loss | epoch | step |
---|---|---|---|---|---|---|---|
TorchTrainer_839b5_00000 | TERMINATED | 10.0.23.226:66074 | 1 | 2868.15 | 0.176025 | 0 | 135 |
(TrainTrainable pid=66074) StorageContext on SESSION (rank=None):
(TrainTrainable pid=66074) StorageContext<
(TrainTrainable pid=66074) storage_path=/mnt/cluster_storage
(TrainTrainable pid=66074) storage_local_path=/home/ray/ray_results
(TrainTrainable pid=66074) storage_filesystem=<pyarrow._fs.LocalFileSystem object at 0x7f8b0a2cd7f0>
(TrainTrainable pid=66074) storage_fs_path=/mnt/cluster_storage
(TrainTrainable pid=66074) experiment_dir_name=finetune_dolly-v2-7b
(TrainTrainable pid=66074) trial_dir_name=TorchTrainer_839b5_00000_0_2023-08-30_11-03-25
(TrainTrainable pid=66074) current_checkpoint_index=0
(TrainTrainable pid=66074) >
(TorchTrainer pid=66074) Starting distributed worker processes: ['66181 (10.0.23.226)', '14250 (10.0.40.16)', '13932 (10.0.2.17)', '13832 (10.0.41.56)', '14288 (10.0.53.250)', '13909 (10.0.41.152)', '13803 (10.0.14.94)', '47214 (10.0.44.99)', '13836 (10.0.58.27)', '13838 (10.0.58.206)', '13755 (10.0.62.244)', '13828 (10.0.9.99)', '13771 (10.0.43.35)', '13726 (10.0.59.245)', '13829 (10.0.58.178)', '13861 (10.0.46.116)']
(RayTrainWorker pid=66181) Setting up process group for: env:// [rank=0, world_size=16]
(RayTrainWorker pid=66181) StorageContext on SESSION (rank=0):
(RayTrainWorker pid=14250, ip=10.0.40.16) StorageContext< [repeated 2x across cluster] (Ray deduplicates logs by default. Set RAY_DEDUP_LOGS=0 to disable log deduplication, or see https://docs.ray.io/en/master/ray-observability/ray-logging.html#log-deduplication for more options.)
(RayTrainWorker pid=14250, ip=10.0.40.16) storage_path=/mnt/cluster_storage [repeated 2x across cluster]
(RayTrainWorker pid=14250, ip=10.0.40.16) storage_local_path=/home/ray/ray_results [repeated 2x across cluster]
(RayTrainWorker pid=14250, ip=10.0.40.16) storage_filesystem=<pyarrow._fs.LocalFileSystem object at 0x7ff145c40b30> [repeated 2x across cluster]
(RayTrainWorker pid=14250, ip=10.0.40.16) storage_fs_path=/mnt/cluster_storage [repeated 2x across cluster]
(RayTrainWorker pid=14250, ip=10.0.40.16) current_checkpoint_index=0 [repeated 6x across cluster]
(RayTrainWorker pid=14250, ip=10.0.40.16) > [repeated 2x across cluster]
(SplitCoordinator pid=66292) Auto configuring locality_with_output=['5ed99d043a52f67deb150f34202c09b77bd37409502ebf6e581b0544', '8efe8198d7c04d45714ae757f298c316117405f3a8b25b87a71e0d9e', 'e3754d1e1017e68dd919b35d35ea62ed7b005ad96452f371721fc9fa', '8bd0f431ab3733c4b423c1d50db06460e3c210de47355b3b4d215c31', '73a8b9377fe9531a84eaa7b30c966fbb11bc36aff070d55c8f7acd1a', 'ef922c93f3b2fc93ebe5a521426d24fb8aae7e13c65f9fbd106aea2a', '5249cff3eab41121f840c17a79e6a3cd0af0f059def707a39e055fcf', '042b668e5553a589a4f6693c45deee0abe57a1d754812172af425acb', '9ed138bfe1f9c7dca484ee08d8311806389adb3af7a76566a6f4dfaa', '7e2fcb5dfe4ab1b572d87257f9e13bbc22b33ba968b1e67a79505589', '39b1ef4da8493a22e321a1ea9dd13387f50d9a6e2d2fbad58ad5fe9c', '9484193409a5346c0838a4a19a0a08eec122477682ea1cb0ad3e305a', '0158084645ec305bdd2ab11a6f35c44ad206405ca810e65f24b09398', 'fe5b11633900d1c437b2e3ee4ea44c18cf68f3dece546537d2090c63', '573645f42162f531a66d20776a95ba05102fae8e4b8090d48b94b233', '47e317ad5d0eb94cabb78871541160763283629d0d3f3b77b69521ae']
(RayTrainWorker pid=66181) Using 16bit Automatic Mixed Precision (AMP)
(RayTrainWorker pid=66181) GPU available: True (cuda), used: True
(RayTrainWorker pid=66181) TPU available: False, using: 0 TPU cores
(RayTrainWorker pid=66181) IPU available: False, using: 0 IPUs
(RayTrainWorker pid=66181) HPU available: False, using: 0 HPUs
(RayTrainWorker pid=13726, ip=10.0.59.245) StorageContext on SESSION (rank=13): [repeated 15x across cluster]
(RayTrainWorker pid=13726, ip=10.0.59.245) StorageContext< [repeated 14x across cluster]
(RayTrainWorker pid=13726, ip=10.0.59.245) storage_path=/mnt/cluster_storage [repeated 14x across cluster]
(RayTrainWorker pid=13726, ip=10.0.59.245) storage_local_path=/home/ray/ray_results [repeated 14x across cluster]
(RayTrainWorker pid=13726, ip=10.0.59.245) storage_filesystem=<pyarrow._fs.LocalFileSystem object at 0x7fc9841d7a70> [repeated 14x across cluster]
(RayTrainWorker pid=13726, ip=10.0.59.245) storage_fs_path=/mnt/cluster_storage [repeated 14x across cluster]
(RayTrainWorker pid=13726, ip=10.0.59.245) current_checkpoint_index=0 [repeated 42x across cluster]
(RayTrainWorker pid=13726, ip=10.0.59.245) > [repeated 14x across cluster]
(RayTrainWorker pid=66181) Missing logger folder: /home/ray/ray_results/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25/lightning_logs
(RayTrainWorker pid=13832, ip=10.0.41.56) Using 16bit Automatic Mixed Precision (AMP)
(RayTrainWorker pid=13836, ip=10.0.58.27) Using 16bit Automatic Mixed Precision (AMP)
(RayTrainWorker pid=13832, ip=10.0.41.56) Missing logger folder: /home/ray/ray_results/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25/lightning_logs
(RayTrainWorker pid=13726, ip=10.0.59.245) Using 16bit Automatic Mixed Precision (AMP) [repeated 13x across cluster]
(RayTrainWorker pid=47214, ip=10.0.44.99) Missing logger folder: /home/ray/ray_results/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25/lightning_logs [repeated 13x across cluster]
(RayTrainWorker pid=13909, ip=10.0.41.152) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
(RayTrainWorker pid=66181) FullyShardedDataParallel(
(RayTrainWorker pid=66181) (_fsdp_wrapped_module): _LightningModuleWrapperBase(
(RayTrainWorker pid=66181) (_forward_module): DollyV2Model(
(RayTrainWorker pid=66181) (model): GPTNeoXForCausalLM(
(RayTrainWorker pid=66181) (gpt_neox): GPTNeoXModel(
(RayTrainWorker pid=66181) (embed_in): Embedding(50280, 4096)
(RayTrainWorker pid=66181) (layers): ModuleList(
(RayTrainWorker pid=66181) (0-31): 32 x FullyShardedDataParallel(
(RayTrainWorker pid=66181) (_fsdp_wrapped_module): CheckpointWrapper(
(RayTrainWorker pid=66181) (_checkpoint_wrapped_module): GPTNeoXLayer(
(RayTrainWorker pid=66181) (input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(RayTrainWorker pid=66181) (post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(RayTrainWorker pid=66181) (attention): GPTNeoXAttention(
(RayTrainWorker pid=66181) (rotary_emb): RotaryEmbedding()
(RayTrainWorker pid=66181) (query_key_value): Linear(in_features=4096, out_features=12288, bias=True)
(RayTrainWorker pid=66181) (dense): Linear(in_features=4096, out_features=4096, bias=True)
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) (mlp): GPTNeoXMLP(
(RayTrainWorker pid=66181) (dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True)
(RayTrainWorker pid=66181) (dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True)
(RayTrainWorker pid=66181) (act): GELUActivation()
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) (embed_out): Linear(in_features=4096, out_features=50280, bias=False)
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) )
(RayTrainWorker pid=66181) )
Epoch 0: 0%| | 0/134 [00:00<?, ?it/s]
(RayTrainWorker pid=66181)
(RayTrainWorker pid=66181) | Name | Type | Params
(RayTrainWorker pid=66181) ---------------------------------------------
(RayTrainWorker pid=66181) 0 | model | GPTNeoXForCausalLM | 402 M
(RayTrainWorker pid=66181) ---------------------------------------------
(RayTrainWorker pid=66181) 402 M Trainable params
(RayTrainWorker pid=66181) 0 Non-trainable params
(RayTrainWorker pid=66181) 402 M Total params
(RayTrainWorker pid=66181) 1,611.039 Total estimated model params size (MB)
(RayTrainWorker pid=13726, ip=10.0.59.245) Missing logger folder: /home/ray/ray_results/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25/lightning_logs
(RayTrainWorker pid=13803, ip=10.0.14.94) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] [repeated 15x across cluster]
(SplitCoordinator pid=66292) Executing DAG InputDataBuffer[Input] -> TaskPoolMapOperator[MapBatches(split_text)->MapBatches(tokenize)] -> OutputSplitter[split(16, equal=True)]
(SplitCoordinator pid=66292) Execution config: ExecutionOptions(resource_limits=ExecutionResources(cpu=None, gpu=None, object_store_memory=2000000000.0), locality_with_output=['5ed99d043a52f67deb150f34202c09b77bd37409502ebf6e581b0544', '8efe8198d7c04d45714ae757f298c316117405f3a8b25b87a71e0d9e', 'e3754d1e1017e68dd919b35d35ea62ed7b005ad96452f371721fc9fa', '8bd0f431ab3733c4b423c1d50db06460e3c210de47355b3b4d215c31', '73a8b9377fe9531a84eaa7b30c966fbb11bc36aff070d55c8f7acd1a', 'ef922c93f3b2fc93ebe5a521426d24fb8aae7e13c65f9fbd106aea2a', '5249cff3eab41121f840c17a79e6a3cd0af0f059def707a39e055fcf', '042b668e5553a589a4f6693c45deee0abe57a1d754812172af425acb', '9ed138bfe1f9c7dca484ee08d8311806389adb3af7a76566a6f4dfaa', '7e2fcb5dfe4ab1b572d87257f9e13bbc22b33ba968b1e67a79505589', '39b1ef4da8493a22e321a1ea9dd13387f50d9a6e2d2fbad58ad5fe9c', '9484193409a5346c0838a4a19a0a08eec122477682ea1cb0ad3e305a', '0158084645ec305bdd2ab11a6f35c44ad206405ca810e65f24b09398', 'fe5b11633900d1c437b2e3ee4ea44c18cf68f3dece546537d2090c63', '573645f42162f531a66d20776a95ba05102fae8e4b8090d48b94b233', '47e317ad5d0eb94cabb78871541160763283629d0d3f3b77b69521ae'], preserve_order=False, actor_locality_enabled=True, verbose_progress=False)
(SplitCoordinator pid=66292) Tip: For detailed progress reporting, run `ray.data.DataContext.get_current().execution_options.verbose_progress = True`
Epoch 0: 1%| | 1/134 [00:25<57:20, 25.87s/it, v_num=0, train_loss=12.90]
Epoch 0: 1%|▏ | 2/134 [00:43<47:24, 21.55s/it, v_num=0, train_loss=12.50]
Epoch 0: 2%|▏ | 3/134 [01:00<43:55, 20.12s/it, v_num=0, train_loss=12.50]
Epoch 0: 3%|▎ | 4/134 [01:21<44:23, 20.49s/it, v_num=0, train_loss=12.50]
Epoch 0: 4%|▎ | 5/134 [01:39<42:42, 19.87s/it, v_num=0, train_loss=12.50]
Epoch 0: 4%|▍ | 6/134 [01:56<41:29, 19.45s/it, v_num=0, train_loss=12.50]
(autoscaler +4m7s) Tip: use `ray status` to view detailed cluster status. To disable these messages, set RAY_SCHEDULER_EVENTS=0.
(autoscaler +4m7s) [workspace snapshot] New snapshot created successfully (size: 448.90 KB).
Epoch 0: 5%|▌ | 7/134 [02:13<40:30, 19.14s/it, v_num=0, train_loss=12.50]
Epoch 0: 6%|▌ | 8/134 [02:31<39:43, 18.92s/it, v_num=0, train_loss=12.50]
Epoch 0: 7%|▋ | 9/134 [02:48<39:04, 18.76s/it, v_num=0, train_loss=12.50]
Epoch 0: 7%|▋ | 9/134 [02:48<39:06, 18.77s/it, v_num=0, train_loss=12.50]
Epoch 0: 7%|▋ | 10/134 [03:06<38:33, 18.66s/it, v_num=0, train_loss=12.50]
Epoch 0: 7%|▋ | 10/134 [03:06<38:35, 18.67s/it, v_num=0, train_loss=0.587]
Epoch 0: 8%|▊ | 11/134 [03:24<38:02, 18.56s/it, v_num=0, train_loss=0.587]
Epoch 0: 8%|▊ | 11/134 [03:24<38:04, 18.57s/it, v_num=0, train_loss=0.600]
Epoch 0: 9%|▉ | 12/134 [03:41<37:34, 18.48s/it, v_num=0, train_loss=0.600]
Epoch 0: 9%|▉ | 12/134 [03:41<37:36, 18.49s/it, v_num=0, train_loss=0.590]
Epoch 0: 10%|▉ | 13/134 [03:59<37:08, 18.41s/it, v_num=0, train_loss=0.590]
Epoch 0: 10%|▉ | 13/134 [03:59<37:09, 18.43s/it, v_num=0, train_loss=0.591]
Epoch 0: 10%|█ | 14/134 [04:17<36:44, 18.37s/it, v_num=0, train_loss=0.591]
Epoch 0: 10%|█ | 14/134 [04:17<36:45, 18.38s/it, v_num=0, train_loss=0.590]
Epoch 0: 11%|█ | 15/134 [04:34<36:19, 18.32s/it, v_num=0, train_loss=0.590]
Epoch 0: 11%|█ | 15/134 [04:34<36:21, 18.33s/it, v_num=0, train_loss=0.551]
Epoch 0: 12%|█▏ | 16/134 [04:52<35:57, 18.29s/it, v_num=0, train_loss=0.551]
Epoch 0: 12%|█▏ | 16/134 [04:52<35:58, 18.29s/it, v_num=0, train_loss=0.521]
Epoch 0: 13%|█▎ | 17/134 [05:10<35:35, 18.25s/it, v_num=0, train_loss=0.521]
Epoch 0: 13%|█▎ | 17/134 [05:10<35:36, 18.26s/it, v_num=0, train_loss=0.522]
Epoch 0: 13%|█▎ | 18/134 [05:28<35:14, 18.23s/it, v_num=0, train_loss=0.522]
Epoch 0: 13%|█▎ | 18/134 [05:28<35:15, 18.23s/it, v_num=0, train_loss=0.518]
Epoch 0: 14%|█▍ | 19/134 [05:45<34:52, 18.19s/it, v_num=0, train_loss=0.518]
Epoch 0: 14%|█▍ | 19/134 [05:45<34:52, 18.20s/it, v_num=0, train_loss=0.476]
Epoch 0: 15%|█▍ | 20/134 [06:03<34:30, 18.16s/it, v_num=0, train_loss=0.476]
Epoch 0: 15%|█▍ | 20/134 [06:03<34:31, 18.17s/it, v_num=0, train_loss=0.457]
Epoch 0: 16%|█▌ | 21/134 [06:23<34:23, 18.26s/it, v_num=0, train_loss=0.457]
Epoch 0: 16%|█▌ | 21/134 [06:23<34:23, 18.27s/it, v_num=0, train_loss=0.476]
Epoch 0: 16%|█▋ | 22/134 [06:42<34:09, 18.30s/it, v_num=0, train_loss=0.476]
Epoch 0: 16%|█▋ | 22/134 [06:42<34:10, 18.31s/it, v_num=0, train_loss=0.447]
(autoscaler +9m7s) [workspace snapshot] New snapshot created successfully (size: 451.39 KB).
Epoch 0: 17%|█▋ | 23/134 [07:00<33:49, 18.28s/it, v_num=0, train_loss=0.447]
Epoch 0: 17%|█▋ | 23/134 [07:00<33:49, 18.29s/it, v_num=0, train_loss=0.412]
Epoch 0: 18%|█▊ | 24/134 [07:19<33:33, 18.31s/it, v_num=0, train_loss=0.412]
Epoch 0: 18%|█▊ | 24/134 [07:19<33:34, 18.31s/it, v_num=0, train_loss=0.385]
Epoch 0: 19%|█▊ | 25/134 [07:37<33:13, 18.29s/it, v_num=0, train_loss=0.385]
Epoch 0: 19%|█▊ | 25/134 [07:37<33:13, 18.29s/it, v_num=0, train_loss=0.384]
Epoch 0: 19%|█▉ | 26/134 [07:54<32:52, 18.27s/it, v_num=0, train_loss=0.384]
Epoch 0: 19%|█▉ | 26/134 [07:55<32:53, 18.27s/it, v_num=0, train_loss=0.406]
Epoch 0: 20%|██ | 27/134 [08:12<32:32, 18.25s/it, v_num=0, train_loss=0.406]
Epoch 0: 20%|██ | 27/134 [08:12<32:32, 18.25s/it, v_num=0, train_loss=0.380]
Epoch 0: 21%|██ | 28/134 [08:30<32:12, 18.23s/it, v_num=0, train_loss=0.380]
Epoch 0: 21%|██ | 28/134 [08:30<32:12, 18.23s/it, v_num=0, train_loss=0.405]
Epoch 0: 22%|██▏ | 29/134 [08:48<31:52, 18.21s/it, v_num=0, train_loss=0.405]
Epoch 0: 22%|██▏ | 29/134 [08:48<31:52, 18.22s/it, v_num=0, train_loss=0.355]
Epoch 0: 22%|██▏ | 30/134 [09:06<31:32, 18.20s/it, v_num=0, train_loss=0.355]
Epoch 0: 22%|██▏ | 30/134 [09:06<31:33, 18.21s/it, v_num=0, train_loss=0.376]
Epoch 0: 23%|██▎ | 31/134 [09:23<31:12, 18.18s/it, v_num=0, train_loss=0.376]
Epoch 0: 23%|██▎ | 31/134 [09:23<31:13, 18.19s/it, v_num=0, train_loss=0.330]
Epoch 0: 24%|██▍ | 32/134 [09:41<30:53, 18.17s/it, v_num=0, train_loss=0.330]
Epoch 0: 24%|██▍ | 32/134 [09:41<30:53, 18.17s/it, v_num=0, train_loss=0.359]
Epoch 0: 25%|██▍ | 33/134 [09:59<30:33, 18.15s/it, v_num=0, train_loss=0.359]
Epoch 0: 25%|██▍ | 33/134 [09:59<30:33, 18.16s/it, v_num=0, train_loss=0.319]
Epoch 0: 25%|██▌ | 34/134 [10:16<30:14, 18.14s/it, v_num=0, train_loss=0.319]
Epoch 0: 25%|██▌ | 34/134 [10:16<30:14, 18.15s/it, v_num=0, train_loss=0.359]
Epoch 0: 26%|██▌ | 35/134 [10:34<29:54, 18.13s/it, v_num=0, train_loss=0.359]
Epoch 0: 26%|██▌ | 35/134 [10:34<29:54, 18.13s/it, v_num=0, train_loss=0.405]
Epoch 0: 27%|██▋ | 36/134 [10:52<29:35, 18.12s/it, v_num=0, train_loss=0.405]
Epoch 0: 27%|██▋ | 36/134 [10:52<29:35, 18.12s/it, v_num=0, train_loss=0.362]
Epoch 0: 28%|██▊ | 37/134 [11:09<29:16, 18.10s/it, v_num=0, train_loss=0.362]
Epoch 0: 28%|██▊ | 37/134 [11:10<29:16, 18.11s/it, v_num=0, train_loss=0.343]
Epoch 0: 28%|██▊ | 38/134 [11:27<28:56, 18.09s/it, v_num=0, train_loss=0.343]
Epoch 0: 28%|██▊ | 38/134 [11:27<28:57, 18.10s/it, v_num=0, train_loss=0.335]
Epoch 0: 29%|██▉ | 39/134 [11:45<28:38, 18.08s/it, v_num=0, train_loss=0.335]
Epoch 0: 29%|██▉ | 39/134 [11:45<28:38, 18.09s/it, v_num=0, train_loss=0.325]
(autoscaler +14m8s) [workspace snapshot] New snapshot created successfully (size: 455.47 KB).
Epoch 0: 30%|██▉ | 40/134 [12:03<28:19, 18.08s/it, v_num=0, train_loss=0.325]
Epoch 0: 30%|██▉ | 40/134 [12:03<28:19, 18.08s/it, v_num=0, train_loss=0.344]
Epoch 0: 31%|███ | 41/134 [12:20<27:59, 18.06s/it, v_num=0, train_loss=0.344]
Epoch 0: 31%|███ | 41/134 [12:20<28:00, 18.06s/it, v_num=0, train_loss=0.312]
Epoch 0: 31%|███▏ | 42/134 [12:38<27:40, 18.05s/it, v_num=0, train_loss=0.312]
Epoch 0: 31%|███▏ | 42/134 [12:38<27:40, 18.05s/it, v_num=0, train_loss=0.338]
Epoch 0: 32%|███▏ | 43/134 [12:55<27:21, 18.04s/it, v_num=0, train_loss=0.338]
Epoch 0: 32%|███▏ | 43/134 [12:55<27:21, 18.04s/it, v_num=0, train_loss=0.315]
Epoch 0: 33%|███▎ | 44/134 [13:13<27:02, 18.03s/it, v_num=0, train_loss=0.315]
Epoch 0: 33%|███▎ | 44/134 [13:13<27:02, 18.03s/it, v_num=0, train_loss=0.330]
Epoch 0: 34%|███▎ | 45/134 [13:31<26:44, 18.02s/it, v_num=0, train_loss=0.330]
Epoch 0: 34%|███▎ | 45/134 [13:31<26:44, 18.03s/it, v_num=0, train_loss=0.253]
Epoch 0: 34%|███▍ | 46/134 [13:48<26:25, 18.02s/it, v_num=0, train_loss=0.253]
Epoch 0: 34%|███▍ | 46/134 [13:49<26:25, 18.02s/it, v_num=0, train_loss=0.310]
Epoch 0: 35%|███▌ | 47/134 [14:06<26:07, 18.01s/it, v_num=0, train_loss=0.310]
Epoch 0: 35%|███▌ | 47/134 [14:06<26:07, 18.01s/it, v_num=0, train_loss=0.294]
Epoch 0: 36%|███▌ | 48/134 [14:24<25:48, 18.01s/it, v_num=0, train_loss=0.294]
Epoch 0: 36%|███▌ | 48/134 [14:24<25:48, 18.01s/it, v_num=0, train_loss=0.302]
Epoch 0: 37%|███▋ | 49/134 [14:41<25:29, 18.00s/it, v_num=0, train_loss=0.302]
Epoch 0: 37%|███▋ | 49/134 [14:42<25:30, 18.00s/it, v_num=0, train_loss=0.325]
Epoch 0: 37%|███▋ | 50/134 [14:59<25:11, 17.99s/it, v_num=0, train_loss=0.325]
Epoch 0: 37%|███▋ | 50/134 [14:59<25:11, 18.00s/it, v_num=0, train_loss=0.250]
Epoch 0: 38%|███▊ | 51/134 [15:17<24:53, 17.99s/it, v_num=0, train_loss=0.250]
Epoch 0: 38%|███▊ | 51/134 [15:17<24:53, 17.99s/it, v_num=0, train_loss=0.291]
Epoch 0: 39%|███▉ | 52/134 [15:34<24:34, 17.98s/it, v_num=0, train_loss=0.291]
Epoch 0: 39%|███▉ | 52/134 [15:35<24:34, 17.98s/it, v_num=0, train_loss=0.261]
Epoch 0: 40%|███▉ | 53/134 [15:52<24:15, 17.98s/it, v_num=0, train_loss=0.261]
Epoch 0: 40%|███▉ | 53/134 [15:52<24:16, 17.98s/it, v_num=0, train_loss=0.292]
Epoch 0: 40%|████ | 54/134 [16:10<23:57, 17.97s/it, v_num=0, train_loss=0.292]
Epoch 0: 40%|████ | 54/134 [16:10<23:58, 17.98s/it, v_num=0, train_loss=0.245]
Epoch 0: 41%|████ | 55/134 [16:28<23:39, 17.97s/it, v_num=0, train_loss=0.245]
Epoch 0: 41%|████ | 55/134 [16:28<23:39, 17.97s/it, v_num=0, train_loss=0.265]
Epoch 0: 42%|████▏ | 56/134 [16:45<23:20, 17.96s/it, v_num=0, train_loss=0.265]
Epoch 0: 42%|████▏ | 56/134 [16:45<23:21, 17.96s/it, v_num=0, train_loss=0.233]
(autoscaler +19m8s) [workspace snapshot] New snapshot created successfully (size: 458.23 KB).
Epoch 0: 43%|████▎ | 57/134 [17:03<23:02, 17.96s/it, v_num=0, train_loss=0.233]
Epoch 0: 43%|████▎ | 57/134 [17:03<23:02, 17.96s/it, v_num=0, train_loss=0.228]
Epoch 0: 43%|████▎ | 58/134 [17:21<22:44, 17.96s/it, v_num=0, train_loss=0.228]
Epoch 0: 43%|████▎ | 58/134 [17:21<22:45, 17.96s/it, v_num=0, train_loss=0.222]
Epoch 0: 44%|████▍ | 59/134 [17:39<22:26, 17.96s/it, v_num=0, train_loss=0.222]
Epoch 0: 44%|████▍ | 59/134 [17:39<22:27, 17.96s/it, v_num=0, train_loss=0.240]
Epoch 0: 45%|████▍ | 60/134 [17:57<22:08, 17.96s/it, v_num=0, train_loss=0.240]
Epoch 0: 45%|████▍ | 60/134 [17:57<22:08, 17.96s/it, v_num=0, train_loss=0.220]
Epoch 0: 46%|████▌ | 61/134 [18:15<21:50, 17.95s/it, v_num=0, train_loss=0.220]
Epoch 0: 46%|████▌ | 61/134 [18:15<21:50, 17.95s/it, v_num=0, train_loss=0.235]
Epoch 0: 46%|████▋ | 62/134 [18:32<21:32, 17.95s/it, v_num=0, train_loss=0.235]
Epoch 0: 46%|████▋ | 62/134 [18:32<21:32, 17.95s/it, v_num=0, train_loss=0.230]
Epoch 0: 47%|████▋ | 63/134 [18:50<21:14, 17.95s/it, v_num=0, train_loss=0.230]
Epoch 0: 47%|████▋ | 63/134 [18:50<21:14, 17.95s/it, v_num=0, train_loss=0.247]
Epoch 0: 48%|████▊ | 64/134 [19:08<20:55, 17.94s/it, v_num=0, train_loss=0.247]
Epoch 0: 48%|████▊ | 64/134 [19:08<20:56, 17.94s/it, v_num=0, train_loss=0.243]
Epoch 0: 49%|████▊ | 65/134 [19:25<20:37, 17.94s/it, v_num=0, train_loss=0.243]
Epoch 0: 49%|████▊ | 65/134 [19:26<20:37, 17.94s/it, v_num=0, train_loss=0.233]
Epoch 0: 49%|████▉ | 66/134 [19:43<20:19, 17.93s/it, v_num=0, train_loss=0.233]
Epoch 0: 49%|████▉ | 66/134 [19:43<20:19, 17.94s/it, v_num=0, train_loss=0.253]
Epoch 0: 50%|█████ | 67/134 [20:01<20:01, 17.93s/it, v_num=0, train_loss=0.253]
Epoch 0: 50%|█████ | 67/134 [20:01<20:01, 17.93s/it, v_num=0, train_loss=0.235]
Epoch 0: 51%|█████ | 68/134 [20:19<19:43, 17.93s/it, v_num=0, train_loss=0.235]
Epoch 0: 51%|█████ | 68/134 [20:19<19:43, 17.93s/it, v_num=0, train_loss=0.270]
Epoch 0: 51%|█████▏ | 69/134 [20:37<19:25, 17.93s/it, v_num=0, train_loss=0.270]
Epoch 0: 51%|█████▏ | 69/134 [20:37<19:25, 17.93s/it, v_num=0, train_loss=0.220]
Epoch 0: 52%|█████▏ | 70/134 [20:54<19:07, 17.93s/it, v_num=0, train_loss=0.220]
Epoch 0: 52%|█████▏ | 70/134 [20:55<19:07, 17.93s/it, v_num=0, train_loss=0.249]
Epoch 0: 53%|█████▎ | 71/134 [21:12<18:49, 17.93s/it, v_num=0, train_loss=0.249]
Epoch 0: 53%|█████▎ | 71/134 [21:12<18:49, 17.93s/it, v_num=0, train_loss=0.231]
Epoch 0: 54%|█████▎ | 72/134 [21:30<18:31, 17.92s/it, v_num=0, train_loss=0.231]
Epoch 0: 54%|█████▎ | 72/134 [21:30<18:31, 17.92s/it, v_num=0, train_loss=0.206]
Epoch 0: 54%|█████▍ | 73/134 [21:48<18:13, 17.92s/it, v_num=0, train_loss=0.206]
Epoch 0: 54%|█████▍ | 73/134 [21:48<18:13, 17.92s/it, v_num=0, train_loss=0.266]
(autoscaler +24m8s) [workspace snapshot] New snapshot created successfully (size: 462.71 KB).
Epoch 0: 55%|█████▌ | 74/134 [22:05<17:55, 17.92s/it, v_num=0, train_loss=0.266]
Epoch 0: 55%|█████▌ | 74/134 [22:06<17:55, 17.92s/it, v_num=0, train_loss=0.252]
Epoch 0: 56%|█████▌ | 75/134 [22:23<17:37, 17.92s/it, v_num=0, train_loss=0.252]
Epoch 0: 56%|█████▌ | 75/134 [22:23<17:37, 17.92s/it, v_num=0, train_loss=0.218]
Epoch 0: 57%|█████▋ | 76/134 [22:41<17:19, 17.92s/it, v_num=0, train_loss=0.218]
Epoch 0: 57%|█████▋ | 76/134 [22:41<17:19, 17.92s/it, v_num=0, train_loss=0.195]
Epoch 0: 57%|█████▋ | 77/134 [22:59<17:01, 17.91s/it, v_num=0, train_loss=0.195]
Epoch 0: 57%|█████▋ | 77/134 [22:59<17:01, 17.91s/it, v_num=0, train_loss=0.210]
Epoch 0: 58%|█████▊ | 78/134 [23:17<16:42, 17.91s/it, v_num=0, train_loss=0.210]
Epoch 0: 58%|█████▊ | 78/134 [23:17<16:43, 17.91s/it, v_num=0, train_loss=0.198]
Epoch 0: 59%|█████▉ | 79/134 [23:34<16:24, 17.91s/it, v_num=0, train_loss=0.198]
Epoch 0: 59%|█████▉ | 79/134 [23:34<16:24, 17.91s/it, v_num=0, train_loss=0.232]
Epoch 0: 60%|█████▉ | 80/134 [23:52<16:06, 17.90s/it, v_num=0, train_loss=0.232]
Epoch 0: 60%|█████▉ | 80/134 [23:52<16:06, 17.90s/it, v_num=0, train_loss=0.267]
Epoch 0: 60%|██████ | 81/134 [24:09<15:48, 17.90s/it, v_num=0, train_loss=0.267]
Epoch 0: 60%|██████ | 81/134 [24:10<15:48, 17.90s/it, v_num=0, train_loss=0.244]
Epoch 0: 61%|██████ | 82/134 [24:27<15:30, 17.90s/it, v_num=0, train_loss=0.244]
Epoch 0: 61%|██████ | 82/134 [24:27<15:30, 17.90s/it, v_num=0, train_loss=0.173]
Epoch 0: 62%|██████▏ | 83/134 [24:45<15:12, 17.89s/it, v_num=0, train_loss=0.173]
Epoch 0: 62%|██████▏ | 83/134 [24:45<15:12, 17.89s/it, v_num=0, train_loss=0.225]
Epoch 0: 63%|██████▎ | 84/134 [25:02<14:54, 17.89s/it, v_num=0, train_loss=0.225]
Epoch 0: 63%|██████▎ | 84/134 [25:03<14:54, 17.89s/it, v_num=0, train_loss=0.231]
Epoch 0: 63%|██████▎ | 85/134 [25:20<14:36, 17.89s/it, v_num=0, train_loss=0.231]
Epoch 0: 63%|██████▎ | 85/134 [25:20<14:36, 17.89s/it, v_num=0, train_loss=0.235]
Epoch 0: 64%|██████▍ | 86/134 [25:38<14:18, 17.88s/it, v_num=0, train_loss=0.235]
Epoch 0: 64%|██████▍ | 86/134 [25:38<14:18, 17.89s/it, v_num=0, train_loss=0.257]
Epoch 0: 65%|██████▍ | 87/134 [25:55<14:00, 17.88s/it, v_num=0, train_loss=0.257]
Epoch 0: 65%|██████▍ | 87/134 [25:56<14:00, 17.89s/it, v_num=0, train_loss=0.297]
Epoch 0: 66%|██████▌ | 88/134 [26:13<13:42, 17.88s/it, v_num=0, train_loss=0.297]
Epoch 0: 66%|██████▌ | 88/134 [26:13<13:42, 17.88s/it, v_num=0, train_loss=0.277]
Epoch 0: 66%|██████▋ | 89/134 [26:31<13:24, 17.88s/it, v_num=0, train_loss=0.277]
Epoch 0: 66%|██████▋ | 89/134 [26:31<13:24, 17.88s/it, v_num=0, train_loss=0.264]
Epoch 0: 67%|██████▋ | 90/134 [26:49<13:06, 17.88s/it, v_num=0, train_loss=0.264]
Epoch 0: 67%|██████▋ | 90/134 [26:49<13:06, 17.88s/it, v_num=0, train_loss=0.269]
(autoscaler +29m8s) [workspace snapshot] New snapshot created successfully (size: 465.81 KB).
Epoch 0: 68%|██████▊ | 91/134 [27:06<12:48, 17.88s/it, v_num=0, train_loss=0.269]
Epoch 0: 68%|██████▊ | 91/134 [27:07<12:48, 17.88s/it, v_num=0, train_loss=0.268]
Epoch 0: 69%|██████▊ | 92/134 [27:24<12:30, 17.88s/it, v_num=0, train_loss=0.268]
Epoch 0: 69%|██████▊ | 92/134 [27:24<12:30, 17.88s/it, v_num=0, train_loss=0.200]
Epoch 0: 69%|██████▉ | 93/134 [27:42<12:12, 17.87s/it, v_num=0, train_loss=0.200]
Epoch 0: 69%|██████▉ | 93/134 [27:42<12:12, 17.88s/it, v_num=0, train_loss=0.229]
Epoch 0: 70%|███████ | 94/134 [28:00<11:54, 17.87s/it, v_num=0, train_loss=0.229]
Epoch 0: 70%|███████ | 94/134 [28:00<11:54, 17.87s/it, v_num=0, train_loss=0.248]
Epoch 0: 71%|███████ | 95/134 [28:17<11:37, 17.87s/it, v_num=0, train_loss=0.248]
Epoch 0: 71%|███████ | 95/134 [28:18<11:37, 17.87s/it, v_num=0, train_loss=0.217]
Epoch 0: 72%|███████▏ | 96/134 [28:35<11:19, 17.87s/it, v_num=0, train_loss=0.217]
Epoch 0: 72%|███████▏ | 96/134 [28:35<11:19, 17.87s/it, v_num=0, train_loss=0.217]
Epoch 0: 72%|███████▏ | 97/134 [28:53<11:01, 17.87s/it, v_num=0, train_loss=0.217]
Epoch 0: 72%|███████▏ | 97/134 [28:53<11:01, 17.87s/it, v_num=0, train_loss=0.238]
Epoch 0: 73%|███████▎ | 98/134 [29:11<10:43, 17.87s/it, v_num=0, train_loss=0.238]
Epoch 0: 73%|███████▎ | 98/134 [29:11<10:43, 17.87s/it, v_num=0, train_loss=0.168]
Epoch 0: 74%|███████▍ | 99/134 [29:28<10:25, 17.87s/it, v_num=0, train_loss=0.168]
Epoch 0: 74%|███████▍ | 99/134 [29:29<10:25, 17.87s/it, v_num=0, train_loss=0.198]
Epoch 0: 75%|███████▍ | 100/134 [29:46<10:07, 17.87s/it, v_num=0, train_loss=0.198]
Epoch 0: 75%|███████▍ | 100/134 [29:46<10:07, 17.87s/it, v_num=0, train_loss=0.205]
Epoch 0: 75%|███████▌ | 101/134 [30:04<09:49, 17.86s/it, v_num=0, train_loss=0.205]
Epoch 0: 75%|███████▌ | 101/134 [30:04<09:49, 17.87s/it, v_num=0, train_loss=0.165]
Epoch 0: 76%|███████▌ | 102/134 [30:21<09:31, 17.86s/it, v_num=0, train_loss=0.165]
Epoch 0: 76%|███████▌ | 102/134 [30:22<09:31, 17.86s/it, v_num=0, train_loss=0.261]
Epoch 0: 77%|███████▋ | 103/134 [30:39<09:13, 17.86s/it, v_num=0, train_loss=0.261]
Epoch 0: 77%|███████▋ | 103/134 [30:39<09:13, 17.86s/it, v_num=0, train_loss=0.250]
Epoch 0: 78%|███████▊ | 104/134 [30:57<08:55, 17.86s/it, v_num=0, train_loss=0.250]
Epoch 0: 78%|███████▊ | 104/134 [30:57<08:55, 17.86s/it, v_num=0, train_loss=0.161]
Epoch 0: 78%|███████▊ | 105/134 [31:15<08:37, 17.86s/it, v_num=0, train_loss=0.161]
Epoch 0: 78%|███████▊ | 105/134 [31:15<08:38, 17.86s/it, v_num=0, train_loss=0.202]
Epoch 0: 79%|███████▉ | 106/134 [31:33<08:20, 17.86s/it, v_num=0, train_loss=0.202]
Epoch 0: 79%|███████▉ | 106/134 [31:33<08:20, 17.86s/it, v_num=0, train_loss=0.177]
Epoch 0: 80%|███████▉ | 107/134 [31:50<08:02, 17.86s/it, v_num=0, train_loss=0.177]
Epoch 0: 80%|███████▉ | 107/134 [31:51<08:02, 17.86s/it, v_num=0, train_loss=0.225]
(autoscaler +34m8s) [workspace snapshot] New snapshot created successfully (size: 470.30 KB).
Epoch 0: 81%|████████ | 108/134 [32:08<07:44, 17.86s/it, v_num=0, train_loss=0.225]
Epoch 0: 81%|████████ | 108/134 [32:08<07:44, 17.86s/it, v_num=0, train_loss=0.188]
Epoch 0: 81%|████████▏ | 109/134 [32:26<07:26, 17.86s/it, v_num=0, train_loss=0.188]
Epoch 0: 81%|████████▏ | 109/134 [32:26<07:26, 17.86s/it, v_num=0, train_loss=0.205]
Epoch 0: 82%|████████▏ | 110/134 [32:44<07:08, 17.86s/it, v_num=0, train_loss=0.205]
Epoch 0: 82%|████████▏ | 110/134 [32:44<07:08, 17.86s/it, v_num=0, train_loss=0.218]
Epoch 0: 83%|████████▎ | 111/134 [33:02<06:50, 17.86s/it, v_num=0, train_loss=0.218]
Epoch 0: 83%|████████▎ | 111/134 [33:02<06:50, 17.86s/it, v_num=0, train_loss=0.259]
Epoch 0: 84%|████████▎ | 112/134 [33:20<06:32, 17.86s/it, v_num=0, train_loss=0.259]
Epoch 0: 84%|████████▎ | 112/134 [33:20<06:32, 17.86s/it, v_num=0, train_loss=0.255]
Epoch 0: 84%|████████▍ | 113/134 [33:38<06:15, 17.86s/it, v_num=0, train_loss=0.255]
Epoch 0: 84%|████████▍ | 113/134 [33:38<06:15, 17.86s/it, v_num=0, train_loss=0.221]
Epoch 0: 85%|████████▌ | 114/134 [33:55<05:57, 17.86s/it, v_num=0, train_loss=0.221]
Epoch 0: 85%|████████▌ | 114/134 [33:56<05:57, 17.86s/it, v_num=0, train_loss=0.185]
Epoch 0: 86%|████████▌ | 115/134 [34:13<05:39, 17.86s/it, v_num=0, train_loss=0.185]
Epoch 0: 86%|████████▌ | 115/134 [34:13<05:39, 17.86s/it, v_num=0, train_loss=0.189]
Epoch 0: 87%|████████▋ | 116/134 [34:31<05:21, 17.86s/it, v_num=0, train_loss=0.189]
Epoch 0: 87%|████████▋ | 116/134 [34:31<05:21, 17.86s/it, v_num=0, train_loss=0.168]
Epoch 0: 87%|████████▋ | 117/134 [34:48<05:03, 17.85s/it, v_num=0, train_loss=0.168]
Epoch 0: 87%|████████▋ | 117/134 [34:49<05:03, 17.86s/it, v_num=0, train_loss=0.166]
Epoch 0: 88%|████████▊ | 118/134 [35:06<04:45, 17.85s/it, v_num=0, train_loss=0.166]
Epoch 0: 88%|████████▊ | 118/134 [35:06<04:45, 17.86s/it, v_num=0, train_loss=0.184]
Epoch 0: 89%|████████▉ | 119/134 [35:24<04:27, 17.85s/it, v_num=0, train_loss=0.184]
Epoch 0: 89%|████████▉ | 119/134 [35:24<04:27, 17.86s/it, v_num=0, train_loss=0.230]
Epoch 0: 90%|████████▉ | 120/134 [35:42<04:09, 17.85s/it, v_num=0, train_loss=0.230]
Epoch 0: 90%|████████▉ | 120/134 [35:42<04:09, 17.86s/it, v_num=0, train_loss=0.251]
Epoch 0: 90%|█████████ | 121/134 [36:00<03:52, 17.86s/it, v_num=0, train_loss=0.251]
Epoch 0: 90%|█████████ | 121/134 [36:00<03:52, 17.86s/it, v_num=0, train_loss=0.244]
Epoch 0: 91%|█████████ | 122/134 [36:18<03:34, 17.85s/it, v_num=0, train_loss=0.244]
Epoch 0: 91%|█████████ | 122/134 [36:18<03:34, 17.86s/it, v_num=0, train_loss=0.232]
Epoch 0: 92%|█████████▏| 123/134 [36:35<03:16, 17.85s/it, v_num=0, train_loss=0.232]
Epoch 0: 92%|█████████▏| 123/134 [36:36<03:16, 17.85s/it, v_num=0, train_loss=0.200]
Epoch 0: 93%|█████████▎| 124/134 [36:53<02:58, 17.85s/it, v_num=0, train_loss=0.200]
Epoch 0: 93%|█████████▎| 124/134 [36:53<02:58, 17.85s/it, v_num=0, train_loss=0.152]
(autoscaler +39m8s) [workspace snapshot] New snapshot created successfully (size: 473.57 KB).
Epoch 0: 93%|█████████▎| 125/134 [37:11<02:40, 17.86s/it, v_num=0, train_loss=0.152]
Epoch 0: 93%|█████████▎| 125/134 [37:12<02:40, 17.86s/it, v_num=0, train_loss=0.162]
Epoch 0: 94%|█████████▍| 126/134 [37:29<02:22, 17.86s/it, v_num=0, train_loss=0.162]
Epoch 0: 94%|█████████▍| 126/134 [37:29<02:22, 17.86s/it, v_num=0, train_loss=0.184]
Epoch 0: 95%|█████████▍| 127/134 [37:47<02:04, 17.86s/it, v_num=0, train_loss=0.184]
Epoch 0: 95%|█████████▍| 127/134 [37:47<02:04, 17.86s/it, v_num=0, train_loss=0.186]
Epoch 0: 96%|█████████▌| 128/134 [38:05<01:47, 17.85s/it, v_num=0, train_loss=0.186]
Epoch 0: 96%|█████████▌| 128/134 [38:05<01:47, 17.86s/it, v_num=0, train_loss=0.208]
Epoch 0: 96%|█████████▋| 129/134 [38:23<01:29, 17.85s/it, v_num=0, train_loss=0.208]
Epoch 0: 96%|█████████▋| 129/134 [38:23<01:29, 17.85s/it, v_num=0, train_loss=0.243]
Epoch 0: 97%|█████████▋| 130/134 [38:40<01:11, 17.85s/it, v_num=0, train_loss=0.243]
Epoch 0: 97%|█████████▋| 130/134 [38:41<01:11, 17.85s/it, v_num=0, train_loss=0.243]
Epoch 0: 98%|█████████▊| 131/134 [38:58<00:53, 17.85s/it, v_num=0, train_loss=0.243]
Epoch 0: 98%|█████████▊| 131/134 [38:58<00:53, 17.85s/it, v_num=0, train_loss=0.213]
Epoch 0: 99%|█████████▊| 132/134 [39:16<00:35, 17.85s/it, v_num=0, train_loss=0.213]
Epoch 0: 99%|█████████▊| 132/134 [39:16<00:35, 17.85s/it, v_num=0, train_loss=0.214]
Epoch 0: 99%|█████████▉| 133/134 [39:34<00:17, 17.85s/it, v_num=0, train_loss=0.214]
Epoch 0: 99%|█████████▉| 133/134 [39:34<00:17, 17.85s/it, v_num=0, train_loss=0.182]
Epoch 0: 100%|██████████| 134/134 [39:52<00:00, 17.85s/it, v_num=0, train_loss=0.182]
Epoch 0: 100%|██████████| 134/134 [39:52<00:00, 17.85s/it, v_num=0, train_loss=0.174]
Epoch 0: : 135it [40:10, 17.85s/it, v_num=0, train_loss=0.174]
Epoch 0: : 135it [40:10, 17.85s/it, v_num=0, train_loss=0.176]
(RayTrainWorker pid=13861, ip=10.0.46.116) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/mnt/cluster_storage/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25/checkpoint_000000)
(autoscaler +44m9s) [workspace snapshot] New snapshot created successfully (size: 477.63 KB).
(RayTrainWorker pid=66181) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/mnt/cluster_storage/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25/checkpoint_000000) [repeated 15x across cluster]
Epoch 0: : 135it [46:03, 20.47s/it, v_num=0, train_loss=0.176]
(RayTrainWorker pid=66181) `Trainer.fit` stopped: `max_epochs=1` reached.
(RayTrainWorker pid=66181) RayFSDPStrategy: tearing down strategy...
2023-08-30 11:51:22,248 WARNING experiment_state.py:371 -- Experiment checkpoint syncing has been triggered multiple times in the last 30.0 seconds. A sync will be triggered whenever a trial has checkpointed more than `num_to_keep` times since last sync or if 300 seconds have passed since last sync. If you have set `num_to_keep` in your `CheckpointConfig`, consider increasing the checkpoint frequency or keeping more checkpoints. You can supress this warning by changing the `TUNE_WARN_EXCESSIVE_EXPERIMENT_CHECKPOINT_SYNC_THRESHOLD_S` environment variable.
2023-08-30 11:51:22,253 INFO tune.py:1142 -- Total run time: 2877.24 seconds (2877.14 seconds for the tuning loop).
Result(
metrics={'train_loss': 0.176025390625, 'epoch': 0, 'step': 135},
path='/mnt/cluster_storage/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25',
filesystem='local',
checkpoint=Checkpoint(filesystem=local, path=/mnt/cluster_storage/finetune_dolly-v2-7b/TorchTrainer_839b5_00000_0_2023-08-30_11-03-25/checkpoint_000000)
)
我们在 2877 秒内完成了训练。按需 g4dn.4xlarge 实例的价格为 $1.204/小时
,而 g4dn.8xlarge 实例的价格为 $2.176/小时
。总费用将为 ($1.204 * 15 + $2.176) * 2877 / 3600 = $16.17
。
使用HuggingFace Pipeline进行文本生成#
我们可以使用HuggingFace Pipeline从我们微调的模型中生成预测。让我们输入一些提示,看看我们微调的Dolly是否能像莎士比亚一样说话:
import os
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, padding_side="right")
ckpt_path = os.path.join(result.checkpoint.path, "checkpoint.ckpt")
dolly = DollyV2Model.load_from_checkpoint(ckpt_path, map_location=torch.device("cpu"))
nlp_pipeline = pipeline(
task="text-generation",
model=dolly.model,
tokenizer=tokenizer,
device_map="auto"
)
for prompt in ["This is", "I am", "Once more"]:
print(nlp_pipeline(prompt, max_new_tokens=20, do_sample=True, pad_token_id=tokenizer.eos_token_id))
[{'generated_text': "This is the day that our hearts live to love. Now come, go in; I'll sit here:"}]
[{'generated_text': 'I am very sorry, not a jot. What would you have? your pardon? my good lord?'}]
[{'generated_text': 'Once more, look up, look up, my sovereign; look up this night!'}]
参考文献: