PBT ConvNet 示例#

#!/usr/bin/env python

# __tutorial_imports_begin__
import argparse
import os

import numpy as np
import torch
import torch.optim as optim

import ray
from ray import train, tune
from ray.train import Checkpoint
from ray.tune.examples.mnist_pytorch import ConvNet, get_data_loaders, test_func
from ray.tune.schedulers import PopulationBasedTraining

# __tutorial_imports_end__


# __train_begin__
def train_convnet(config):
    # Create our data loaders, model, and optmizer.
    step = 0
    train_loader, test_loader = get_data_loaders()
    model = ConvNet()
    optimizer = optim.SGD(
        model.parameters(),
        lr=config.get("lr", 0.01),
        momentum=config.get("momentum", 0.9),
    )

    # If `get_checkpoint()` is not None, then we are resuming from a checkpoint.
    # Load model state and iteration step from checkpoint.
    if train.get_checkpoint():
        print("Loading from checkpoint.")
        loaded_checkpoint = train.get_checkpoint()
        with loaded_checkpoint.as_directory() as loaded_checkpoint_dir:
            path = os.path.join(loaded_checkpoint_dir, "checkpoint.pt")
            checkpoint = torch.load(path)
            model.load_state_dict(checkpoint["model"])
            step = checkpoint["step"]

    while True:
        ray.tune.examples.mnist_pytorch.train_func(model, optimizer, train_loader)
        acc = test_func(model, test_loader)
        checkpoint = None
        if step % 5 == 0:
            # Every 5 steps, checkpoint our current state.
            # First get the checkpoint directory from tune.
            # Need to create a directory under current working directory
            # to construct checkpoint object from.
            os.makedirs("my_model", exist_ok=True)
            torch.save(
                {
                    "step": step,
                    "model": model.state_dict(),
                },
                "my_model/checkpoint.pt",
            )
            checkpoint = Checkpoint.from_directory("my_model")

        step += 1
        train.report({"mean_accuracy": acc}, checkpoint=checkpoint)


# __train_end__


def eval_best_model(results: tune.ResultGrid):
    """Test the best model given output of tuner.fit()."""
    with results.get_best_result().checkpoint.as_directory() as best_checkpoint_path:
        best_model = ConvNet()
        best_checkpoint = torch.load(
            os.path.join(best_checkpoint_path, "checkpoint.pt")
        )
        best_model.load_state_dict(best_checkpoint["model"])
        # Note that test only runs on a small random set of the test data, thus the
        # accuracy may be different from metrics shown in tuning process.
        test_acc = test_func(best_model, get_data_loaders()[1])
        print("best model accuracy: ", test_acc)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--smoke-test", action="store_true", help="Finish quickly for testing"
    )
    args, _ = parser.parse_known_args()

    # __pbt_begin__
    scheduler = PopulationBasedTraining(
        time_attr="training_iteration",
        perturbation_interval=5,
        hyperparam_mutations={
            # distribution for resampling
            "lr": lambda: np.random.uniform(0.0001, 1),
            # allow perturbations within this set of categorical values
            "momentum": [0.8, 0.9, 0.99],
        },
    )

    # __pbt_end__

    # __tune_begin__
    class CustomStopper(tune.Stopper):
        def __init__(self):
            self.should_stop = False

        def __call__(self, trial_id, result):
            max_iter = 5 if args.smoke_test else 100
            if not self.should_stop and result["mean_accuracy"] > 0.96:
                self.should_stop = True
            return self.should_stop or result["training_iteration"] >= max_iter

        def stop_all(self):
            return self.should_stop

    stopper = CustomStopper()

    tuner = tune.Tuner(
        train_convnet,
        run_config=train.RunConfig(
            name="pbt_test",
            stop=stopper,
            verbose=1,
            checkpoint_config=train.CheckpointConfig(
                checkpoint_score_attribute="mean_accuracy",
                num_to_keep=4,
            ),
        ),
        tune_config=tune.TuneConfig(
            scheduler=scheduler,
            metric="mean_accuracy",
            mode="max",
            num_samples=4,
            reuse_actors=True,
        ),
        param_space={
            "lr": tune.uniform(0.001, 1),
            "momentum": tune.uniform(0.001, 1),
        },
    )
    results = tuner.fit()
    # __tune_end__

    eval_best_model(results)