备注
转到结尾 以下载完整示例代码。或在浏览器中通过 Binder 运行此示例。
测量区域属性#
这个示例展示了如何测量标记图像区域的属性。我们首先分析一个包含两个椭圆的图像。下面我们将展示如何交互式地探索标记对象的属性。
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from skimage.draw import ellipse
from skimage.measure import label, regionprops, regionprops_table
from skimage.transform import rotate
image = np.zeros((600, 600))
rr, cc = ellipse(300, 350, 100, 220)
image[rr, cc] = 1
image = rotate(image, angle=15, order=0)
rr, cc = ellipse(100, 100, 60, 50)
image[rr, cc] = 1
label_img = label(image)
regions = regionprops(label_img)
我们使用 skimage.measure.regionprops()
的结果在每个区域上绘制某些属性。例如,我们用红色绘制每个椭圆的长轴和短轴。
fig, ax = plt.subplots()
ax.imshow(image, cmap=plt.cm.gray)
for props in regions:
y0, x0 = props.centroid
orientation = props.orientation
x1 = x0 + math.cos(orientation) * 0.5 * props.axis_minor_length
y1 = y0 - math.sin(orientation) * 0.5 * props.axis_minor_length
x2 = x0 - math.sin(orientation) * 0.5 * props.axis_major_length
y2 = y0 - math.cos(orientation) * 0.5 * props.axis_major_length
ax.plot((x0, x1), (y0, y1), '-r', linewidth=2.5)
ax.plot((x0, x2), (y0, y2), '-r', linewidth=2.5)
ax.plot(x0, y0, '.g', markersize=15)
minr, minc, maxr, maxc = props.bbox
bx = (minc, maxc, maxc, minc, minc)
by = (minr, minr, maxr, maxr, minr)
ax.plot(bx, by, '-b', linewidth=2.5)
ax.axis((0, 600, 600, 0))
plt.show()
我们使用 skimage.measure.regionprops_table()
函数来计算每个区域的(选定)属性。请注意,skimage.measure.regionprops_table
实际上计算了这些属性,而 skimage.measure.regionprops
则在它们被使用时计算(惰性求值)。
props = regionprops_table(
label_img,
properties=('centroid', 'orientation', 'axis_major_length', 'axis_minor_length'),
)
我们现在展示这些选定属性的表格(每行一个区域),skimage.measure.regionprops_table
的结果是一个与 pandas 兼容的字典。
pd.DataFrame(props)
通过在标签的悬停信息中可视化标签对象的属性,也可以交互式地探索这些属性。此示例使用 plotly 在悬停对象时显示属性。
import plotly
import plotly.express as px
import plotly.graph_objects as go
from skimage import data, filters, measure, morphology
img = data.coins()
# Binary image, post-process the binary mask and compute labels
threshold = filters.threshold_otsu(img)
mask = img > threshold
mask = morphology.remove_small_objects(mask, 50)
mask = morphology.remove_small_holes(mask, 50)
labels = measure.label(mask)
fig = px.imshow(img, binary_string=True)
fig.update_traces(hoverinfo='skip') # hover is only for label info
props = measure.regionprops(labels, img)
properties = ['area', 'eccentricity', 'perimeter', 'intensity_mean']
# For each label, add a filled scatter trace for its contour,
# and display the properties of the label in the hover of this trace.
for index in range(1, labels.max()):
label_i = props[index].label
contour = measure.find_contours(labels == label_i, 0.5)[0]
y, x = contour.T
hoverinfo = ''
for prop_name in properties:
hoverinfo += f'<b>{prop_name}: {getattr(props[index], prop_name):.2f}</b><br>'
fig.add_trace(
go.Scatter(
x=x,
y=y,
name=label_i,
mode='lines',
fill='toself',
showlegend=False,
hovertemplate=hoverinfo,
hoveron='points+fills',
)
)
plotly.io.show(fig)
脚本的总运行时间: (0 分钟 0.623 秒)