代码生成

SymPy 中的几个子模块允许直接从 SymPy 表达式生成多种不同编程语言的可编译和可执行代码。此外,还有一些函数可以生成能够非常高效地评估 SymPy 表达式的 Python 可导入对象。

我们将从简要介绍构成 SymPy 代码生成能力的组件开始。

介绍

有四个主要的抽象层次:

expression
   |
code printers
   |
code generators
   |
autowrap

sympy.utilities.autowrap 使用 codegen,而 codegen 使用代码打印机。sympy.utilities.autowrap 完成所有工作:它让你从 SymPy 表达式一步到位地转换为同一 Python 进程中的数值函数。Codegen 是实际的代码生成,即,编译后稍后使用,或包含在某些更大的项目中。

代码打印机将 SymPy 对象转换为实际代码,例如 ``abs(x) -> fabs(x)``(用于 C 语言)。

在许多情况下,代码打印机不会打印出最优代码。例如,在C语言中,x**2 会被打印为 pow(x, 2) 而不是 x*x。其他优化(如数学简化)应在代码打印机之前进行。

目前,sympy.simplify.cse_main.cse() 在这个链中的任何地方都不会自动应用。理想情况下,它应该在代码生成级别或其上方的某个地方发生。

我们将遍历下面的层级。

以下三行将用于设置每个示例:

>>> from sympy import *
>>> init_printing(use_unicode=True)
>>> from sympy.abc import a, e, k, n, r, t, x, y, z, T, Z
>>> from sympy.abc import beta, omega, tau
>>> f, g = symbols('f, g', cls=Function)

代码打印机 (sympy.printing)

这是代码生成的主要部分;SymPy 的翻译实际上更像是一个轻量级的 Python 代码生成版本,以及 Python (sympy.printing.pycode.pycode()) 和 sympy.printing.lambdarepr.lambdarepr(),它们支持许多库(如 NumPy),以及 Aesara (sympy.printing.aesaracode.aesara_function())。代码打印机是 SymPy 中其他打印机(如字符串打印机、漂亮打印机等)的特殊情况。

一个重要的区别是代码打印机必须处理赋值(使用 sympy.codegen.ast.Assignment 对象)。这作为代码打印机和 codegen 模块的构建块。以下是一个在 C 代码中使用 Assignment 的示例:

>>> from sympy.codegen.ast import Assignment
>>> print(ccode(Assignment(x, y + 1)))
x = y + 1;

以下是打印 SymPy 表达式的 C 版本的另一个简单示例:

>>> expr = (Rational(-1, 2) * Z * k * (e**2) / r)
>>> expr
    2
-Z⋅e ⋅k
────────
  2⋅r
>>> ccode(expr)
-1.0/2.0*Z*pow(e, 2)*k/r
>>> from sympy.codegen.ast import real, float80
>>> ccode(expr, assign_to="E", type_aliases={real: float80})
E = -1.0L/2.0L*Z*powl(e, 2)*k/r;

要生成包含C99标准提供的某些数学函数的代码,我们需要从 sympy.codegen.cfunctions 导入函数:

>>> from sympy.codegen.cfunctions import expm1
>>> ccode(expm1(x), standard='C99')
expm1(x)

Piecewise 表达式被转换为条件语句。如果提供了 assign_to 变量,则会创建一个 if 语句,否则使用三元运算符。请注意,如果 Piecewise 缺少默认项,由 (expr, True) 表示,则会抛出一个错误。这是为了防止生成可能不评估任何内容的表达式。Piecewise 的一个使用案例:

>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(fcode(expr, tau))
      if (x > 0) then
         tau = x + 1
      else
         tau = x
      end if

各种打印机也往往很好地支持 Indexed 对象。使用 contract=True 这些表达式将被转换为循环,而 contract=False 将只打印应该循环的赋值表达式:

>>> len_y = 5
>>> mat_1 = IndexedBase('mat_1', shape=(len_y,))
>>> mat_2 = IndexedBase('mat_2', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> eq = Eq(Dy[i], (mat_1[i+1] - mat_1[i]) / (mat_2[i+1] - mat_2[i]))
>>> print(jscode(eq.rhs, assign_to=eq.lhs, contract=False))
Dy[i] = (mat_1[i + 1] - mat_1[i])/(mat_2[i + 1] - mat_2[i]);
>>> Res = IndexedBase('Res', shape=(len_y,))
>>> j = Idx('j', len_y)
>>> eq = Eq(Res[j], mat_1[j]*mat_2[j])
>>> print(jscode(eq.rhs, assign_to=eq.lhs, contract=True))
for (var j=0; j<5; j++){
   Res[j] = 0;
}
for (var j=0; j<5; j++){
   for (var j=0; j<5; j++){
      Res[j] = Res[j] + mat_1[j]*mat_2[j];
   }
}
>>> print(jscode(eq.rhs, assign_to=eq.lhs, contract=False))
Res[j] = mat_1[j]*mat_2[j];

可以通过将一个包含“类型”:“函数”的字典传递给 user_functions 关键字参数来为某些类型定义自定义打印。或者,字典值可以是一个元组列表,即 [(argument_test, cfunction_string)]。这可以用于调用自定义的 Octave 函数:

>>> custom_functions = {
...   "f": "existing_octave_fcn",
...   "g": [(lambda x: x.is_Matrix, "my_mat_fcn"),
...         (lambda x: not x.is_Matrix, "my_fcn")]
... }
>>> mat = Matrix([[1, x]])
>>> octave_code(f(x) + g(x) + g(mat), user_functions=custom_functions)
existing_octave_fcn(x) + my_fcn(x) + my_mat_fcn([1 x])

Mathematica 代码打印机的一个示例:

>>> x_ = Function('x')
>>> expr = x_(n*T) * sin((t - n*T) / T)
>>> expr = expr / ((-T*n + t) / T)
>>> expr
            ⎛-T⋅n + t⎞
T⋅x(T⋅n)⋅sin⎜────────⎟
            ⎝   T    ⎠
──────────────────────
       -T⋅n + t

>>> expr = summation(expr, (n, -1, 1))
>>> mathematica_code(expr)
T*(x[-T]*Sin[(T + t)/T]/(T + t) + x[T]*Sin[(-T + t)/T]/(-T + t) + x[0]*Sin[t/T]/t)

我们可以通过我们支持的不同语言中的一个常见表达来了解它是如何工作的:

>>> k, g1, g2, r, I, S = symbols("k, gamma_1, gamma_2, r, I, S")
>>> expr = k * g1 * g2 / (r**3)
>>> expr = expr * 2 * I * S * (3 * (cos(beta))**2 - 1) / 2
>>> expr
            ⎛     2       ⎞
I⋅S⋅γ₁⋅γ₂⋅k⋅⎝3⋅cos (β) - 1⎠
───────────────────────────
              3
             r
>>> print(jscode(expr, assign_to="H_is"))
H_is = I*S*gamma_1*gamma_2*k*(3*Math.pow(Math.cos(beta), 2) - 1)/Math.pow(r, 3);
>>> print(ccode(expr, assign_to="H_is", standard='C89'))
H_is = I*S*gamma_1*gamma_2*k*(3*pow(cos(beta), 2) - 1)/pow(r, 3);
>>> print(fcode(expr, assign_to="H_is"))
      H_is = I*S*gamma_1*gamma_2*k*(3*cos(beta)**2 - 1)/r**3
>>> print(julia_code(expr, assign_to="H_is"))
H_is = I .* S .* gamma_1 .* gamma_2 .* k .* (3 * cos(beta) .^ 2 - 1) ./ r .^ 3
>>> print(octave_code(expr, assign_to="H_is"))
H_is = I.*S.*gamma_1.*gamma_2.*k.*(3*cos(beta).^2 - 1)./r.^3;
>>> print(rust_code(expr, assign_to="H_is"))
H_is = I*S*gamma_1*gamma_2*k*(3*beta.cos().powi(2) - 1)/r.powi(3);
>>> print(mathematica_code(expr))
I*S*gamma_1*gamma_2*k*(3*Cos[beta]^2 - 1)/r^3

代码生成 (sympy.utilities.codegen)

此模块处理从 SymPy 表达式创建可编译代码。这比 autowrap 更底层,因为它实际上并不尝试编译代码,但比打印机更高级,因为它生成可编译的文件(包括头文件),而不仅仅是代码片段。

这里用户友好的功能是 codegenmake_routinecodegen 接受一个 (变量, 表达式) 对的列表和一个语言(支持 C、F95 和 Octave/Matlab)。它返回,作为字符串,一个代码文件和一个头文件(对于相关语言)。变量被创建为返回表达式值作为输出的函数。

备注

codegen 可调用对象不在 sympy 命名空间中自动存在,要使用它,你必须首先从 sympy.utilities.codegen 导入 codegen

例如:

>>> from sympy.utilities.codegen import codegen
>>> length, breadth, height = symbols('length, breadth, height')
>>> [(c_name, c_code), (h_name, c_header)] = \
... codegen(('volume', length*breadth*height), "C99", "test",
...         header=False, empty=False)
>>> print(c_name)
test.c
>>> print(c_code)
#include "test.h"
#include <math.h>
double volume(double breadth, double height, double length) {
   double volume_result;
   volume_result = breadth*height*length;
   return volume_result;
}
>>> print(h_name)
test.h
>>> print(c_header)
#ifndef PROJECT__TEST__H
#define PROJECT__TEST__H
double volume(double breadth, double height, double length);
#endif

codegen 的各种标志允许你修改事物。预处理器指令的项目名称可以通过 project 进行更改。在参数 global_vars 中列出的全局变量将不会作为函数参数显示。

language 是一个不区分大小写的字符串,表示源代码的语言。目前,支持 CF95OctaveOctave 生成的代码与 Octave 和 Matlab 兼容。

header 当为 True 时,每个源文件的顶部都会写入一个标题。empty 当为 True 时,使用空行来结构化代码。通过 argument_sequence 可以以首选顺序定义例程的参数序列。

prefix 定义了包含源代码的文件名称的前缀。如果省略,则使用第一个 name_expr 元组的名称。

to_files 当为 True 时,代码将被写入一个或多个带有给定前缀的文件中。

这是一个例子:

>>> [(f_name, f_code), header] = codegen(("volume", length*breadth*height),
...     "F95", header=False, empty=False, argument_sequence=(breadth, length),
...     global_vars=(height,))
>>> print(f_code)
REAL*8 function volume(breadth, length)
implicit none
REAL*8, intent(in) :: breadth
REAL*8, intent(in) :: length
volume = breadth*height*length
end function

方法 make_routine 创建一个 Routine 对象,该对象表示一组表达式的评估例程。这仅适用于 CodeGen 对象的内部使用,作为从 SymPy 表达式到生成代码的中间表示。不建议自行创建 Routine 对象。您应该改用 make_routine 方法。make_routine 反过来根据所选语言调用 CodeGen 对象的 routine 方法。这将创建表示赋值等的内部对象,并使用这些对象创建 Routine 类。

各种codegen对象,如 RoutineVariable ,不是SymPy对象(它们不从Basic子类化)。

例如:

>>> from sympy.utilities.codegen import make_routine
>>> from sympy.physics.hydrogen import R_nl
>>> expr = R_nl(3, y, x, 6)
>>> routine = make_routine('my_routine', expr)
>>> [arg.result_var for arg in routine.results]   
[result₅₁₄₂₃₄₁₆₈₁₃₉₇₇₁₉₄₂₈]
>>> [arg.expr for arg in routine.results]
⎡                __________                                          ⎤
⎢          y    ╱ (2 - y)!   -2⋅x                                    ⎥
⎢4⋅√6⋅(4⋅x) ⋅  ╱  ──────── ⋅ℯ    ⋅assoc_laguerre(2 - y, 2⋅y + 1, 4⋅x)⎥
⎢            ╲╱   (y + 3)!                                           ⎥
⎢────────────────────────────────────────────────────────────────────⎥
⎣                                 3                                  ⎦
>>> [arg.name for arg in routine.arguments]
[x, y]

另一个更复杂的例子,混合了指定和自动分配的名称。同时包含矩阵输出:

>>> routine = make_routine('fcn', [x*y, Eq(a, 1), Eq(r, x + r), Matrix([[x, 2]])])
>>> [arg.result_var for arg in routine.results]   
[result_5397460570204848505]
>>> [arg.expr for arg in routine.results]
[x⋅y]
>>> [arg.name for arg in routine.arguments]   
[x, y, a, r, out_8598435338387848786]

我们可以更仔细地检查各种参数:

>>> from sympy.utilities.codegen import (InputArgument, OutputArgument,
...                                      InOutArgument)
>>> [a.name for a in routine.arguments if isinstance(a, InputArgument)]
[x, y]

>>> [a.name for a in routine.arguments if isinstance(a, OutputArgument)]  
[a, out_8598435338387848786]
>>> [a.expr for a in routine.arguments if isinstance(a, OutputArgument)]
[1, [x  2]]

>>> [a.name for a in routine.arguments if isinstance(a, InOutArgument)]
[r]
>>> [a.expr for a in routine.arguments if isinstance(a, InOutArgument)]
[r + x]

完整的 API 参考可以在这里查看 这里

自动换行

Autowrap 自动生成代码,将其写入磁盘,编译它,并将其导入当前会话。该模块的主要功能是 autowrapbinary_functionufuncify

它还会自动将包含 Indexed 对象的表达式转换为求和。类 IndexedBase、Indexed 和 Idx 表示矩阵元素 M[i, j]。更多信息请参见 张量

autowrap 使用 f2py 或 Cython 创建一个包装器,并创建一个数值函数。

备注

autowrap 可调用对象不在 sympy 命名空间中自动存在,要使用它,你必须首先从 sympy.utilities.autowrap 导入 autowrap

从 autowrap() 返回的可调用对象是一个二进制 Python 函数,而不是一个 SymPy 对象。例如:

>>> from sympy.utilities.autowrap import autowrap
>>> expr = ((x - y + z)**(13)).expand()
>>> binary_func = autowrap(expr)    
>>> binary_func(1, 4, 2)    
-1.0

autowrap() 提供的各种标志有助于修改该方法提供的服务。参数 tempdir 告诉 autowrap 在特定目录中编译代码,并在完成后保留文件。例如:

>>> from sympy.utilities.autowrap import autowrap
>>> from sympy.physics.qho_1d import psi_n
>>> x_ = IndexedBase('x')
>>> y_ = IndexedBase('y')
>>> m = symbols('m', integer=True)
>>> i = Idx('i', m)
>>> qho = autowrap(Eq(y_[i], psi_n(0, x_[i], m, omega)), tempdir='/tmp')  

检查指定目录中的Fortran源代码,发现如下内容:

subroutine autofunc(m, omega, x, y)
implicit none
INTEGER*4, intent(in) :: m
REAL*8, intent(in) :: omega
REAL*8, intent(in), dimension(1:m) :: x
REAL*8, intent(out), dimension(1:m) :: y
INTEGER*4 :: i

REAL*8, parameter :: hbar = 1.05457162d-34
REAL*8, parameter :: pi = 3.14159265358979d0
do i = 1, m
   y(i) = (m*omega)**(1.0d0/4.0d0)*exp(-4.74126166983329d+33*m*omega*x(i &
         )**2)/(hbar**(1.0d0/4.0d0)*pi**(1.0d0/4.0d0))
end do

end subroutine

使用参数 args 与它一起改变参数顺序:

>>> eq = Eq(y_[i], psi_n(0, x_[i], m, omega))
>>> qho = autowrap(eq, tempdir='/tmp', args=[y, x, m, omega])  

产生:

subroutine autofunc(y, x, m, omega)
implicit none
INTEGER*4, intent(in) :: m
REAL*8, intent(in) :: omega
REAL*8, intent(out), dimension(1:m) :: y
REAL*8, intent(in), dimension(1:m) :: x
INTEGER*4 :: i

REAL*8, parameter :: hbar = 1.05457162d-34
REAL*8, parameter :: pi = 3.14159265358979d0
do i = 1, m
   y(i) = (m*omega)**(1.0d0/4.0d0)*exp(-4.74126166983329d+33*m*omega*x(i &
         )**2)/(hbar**(1.0d0/4.0d0)*pi**(1.0d0/4.0d0))
end do

end subroutine

参数 verbose 是布尔型,可选的,如果为 True,autowrap 将不会静音命令行后端。这对于调试很有帮助。

参数 languagebackend 用于更改默认值:从 Fortranf2py 改为 CCython。参数 helpers 用于定义主表达式所需辅助表达式。如果主表达式需要调用专用函数,则应将其放入 helpers 可迭代对象中。Autowrap 将确保编译后的主表达式可以链接到辅助例程。条目应为元组 (<function_name>, <sympy_expression>, <arguments>)。必须为主例程提供参数序列。

autowrap 级别可用的另一种方法是 binary_function。它返回一个 sympy 函数。其优点是与 SymPy 速度相比,我们可以拥有非常快的函数。这是因为我们将使用带有 SymPy 属性和方法的编译函数。示例如下:

>>> from sympy.utilities.autowrap import binary_function
>>> from sympy.physics.hydrogen import R_nl
>>> psi_nl = R_nl(1, 0, a, r)
>>> f = binary_function('f', psi_nl)    
>>> f(a, r).evalf(3, subs={a: 1, r: 2})  
0.766

虽然 NumPy 操作对于矢量化数据非常高效,但它们在链式组合时有时会带来不必要的成本。考虑以下操作

>>> x = get_numpy_array(...) 
>>> y = sin(x) / x

运算符 sin/ 调用执行 C 中紧密循环的例程。最终的计算看起来像这样

for(int i = 0; i < n; i++)
{
    temp[i] = sin(x[i]);
}
for(int i = i; i < n; i++)
{
    y[i] = temp[i] / x[i];
}

这稍微有些次优,因为

  1. 我们分配一个额外的 temp 数组

  2. 我们在 x 内存上走了两次,其实一次就足够了

更好的解决方案是将两个元素级操作融合到一个for循环中

for(int i = i; i < n; i++)
{
    y[i] = sin(x[i]) / x[i];
}

像 NumPy 这样的静态编译项目无法利用这些优化。幸运的是,SymPy 能够生成高效的低级 C 或 Fortran 代码。然后,它可以依赖 Cythonf2py 等项目来编译并将该代码重新连接回 Python。幸运的是,这个过程已经很好地自动化了,希望利用此代码生成的 SymPy 用户应该调用 ufuncify 函数。

ufuncify 是 Autowrap 模块中可用的第三种方法。它基本上意味着 ‘通用函数’,并遵循由 NumPy 设定的理念。与 autowrap 相比,ufuncify 的主要优点是它允许数组作为参数,并且可以按元素方式操作。按元素执行的核心操作符合 Numpy 的数组广播规则。更多信息请参见 这里

>>> from sympy import *
>>> from sympy.abc import x
>>> expr = sin(x)/x
>>> from sympy.utilities.autowrap import ufuncify
>>> f = ufuncify([x], expr) 

这个函数 f 接受并返回一个 NumPy 数组。通常 ufuncify 至少与 lambdify 表现一样好。如果表达式复杂,那么 ufuncify 通常会显著优于基于 NumPy 的解决方案。Jensen 在这个主题上有一篇很好的 博客文章

让我们看一个定量分析的例子:

>>> from sympy.physics.hydrogen import R_nl
>>> expr = R_nl(3, 1, x, 6)
>>> expr
               -2⋅x
8⋅x⋅(4 - 4⋅x)⋅ℯ
───────────────────
         3

lambdify 函数将 SymPy 表达式转换为 Python 函数,利用了多种数值库。默认情况下,lambdify 依赖于 math 标准库中的实现。自然地,原始 Python 比 SymPy 更快。然而,它也支持 mpmath,特别是 numpy。使用 NumPy 库使生成的函数能够访问由编译的 C 代码支持的强大的矢量化 ufuncs。

让我们比较一下速度:

>>> from sympy.utilities.autowrap import ufuncify
>>> from sympy.utilities.lambdify import lambdify
>>> fn_numpy = lambdify(x, expr, 'numpy')   
>>> fn_fortran = ufuncify([x], expr, backend='f2py')    
>>> from numpy import linspace  
>>> xx = linspace(0, 1, 5)  
>>> fn_numpy(xx)    
[ 0.          1.21306132  0.98101184  0.44626032  0.        ]
>>> fn_fortran(xx)  
[ 0.          1.21306132  0.98101184  0.44626032  0.        ]
>>> import timeit
>>> timeit.timeit('fn_numpy(xx)', 'from __main__ import fn_numpy, xx', number=10000)    
0.18891601900395472
>>> timeit.timeit('fn_fortran(xx)', 'from __main__ import fn_fortran, xx', number=10000)    
0.004707066000264604

ufuncify 可用的选项与 autowrap 可用的选项大致相同。

SymPy 提供了其他工具来进行高效的数值计算。请参阅 页面以进行比较。

用于重写表达式的类和函数(sympy.codegen.rewriting)

用于重写表达式以优化代码生成的类和函数。一些语言(或其标准),例如C99,提供了专门的数学函数以获得更好的性能和/或精度。

使用本模块中的 optimize 函数,结合一组规则(表示为 Optimization 的实例),可以为此目的重写表达式:

>>> from sympy import Symbol, exp, log
>>> from sympy.codegen.rewriting import optimize, optims_c99
>>> x = Symbol('x')
>>> optimize(3*exp(2*x) - 3, optims_c99)
3*expm1(2*x)
>>> optimize(exp(2*x) - 1 - exp(-33), optims_c99)
expm1(2*x) - exp(-33)
>>> optimize(log(3*x + 3), optims_c99)
log1p(x) + log(3)
>>> optimize(log(2*x + 3), optims_c99)
log(2*x + 3)

上面导入的 optims_c99 是一个包含以下实例的元组(这些实例可以从 sympy.codegen.rewriting 中导入):

  • expm1_opt

  • log1p_opt

  • exp2_opt

  • log2_opt

  • log2const_opt

class sympy.codegen.rewriting.FuncMinusOneOptim(
func,
func_m_1,
opportunistic=True,
)[源代码][源代码]

针对评估“f(x) - 1”函数的 ReplaceOptim 的专门化

参数:
函数

被减去一的函数。

func_m_1

专门用于评估 func(x) - 1 的函数。

机会主义的布尔

True 时,只要剩余数字项的量级减少,就应用变换。当 False 时,只有在完全消除数字项时才应用变换。

方法

__call__(expr)

replace_in_Add(e)

作为第二个参数传递给 Basic.replace(...) 的

最便宜的

示例

>>> from sympy import symbols, exp
>>> from sympy.codegen.rewriting import FuncMinusOneOptim
>>> from sympy.codegen.cfunctions import expm1
>>> x, y = symbols('x y')
>>> expm1_opt = FuncMinusOneOptim(exp, expm1)
>>> expm1_opt(exp(x) + 2*exp(5*y) - 3)
expm1(x) + 2*expm1(5*y)
replace_in_Add(e)[源代码][源代码]

作为第二个参数传递给 Basic.replace(…) 的

class sympy.codegen.rewriting.Optimization(cost_function=None, priority=1)[源代码][源代码]

重写优化的抽象基类。

子类应实现 __call__ ,接受一个表达式作为参数。

参数:
成本函数返回数字的可调用对象
优先级数字

方法

最便宜的

class sympy.codegen.rewriting.ReplaceOptim(query, value, **kwargs)[源代码][源代码]

重写优化调用表达式上的替换。

参数:
查询

传递给 replace 的第一个参数。

传递给 replace 的第二个参数。

方法

__call__(expr)

最便宜的

示例

>>> from sympy import Symbol
>>> from sympy.codegen.rewriting import ReplaceOptim
>>> from sympy.codegen.cfunctions import exp2
>>> x = Symbol('x')
>>> exp2_opt = ReplaceOptim(lambda p: p.is_Pow and p.base == 2,
...     lambda p: exp2(p.exp))
>>> exp2_opt(2**x)
exp2(x)
sympy.codegen.rewriting.create_expand_pow_optimization(
limit,
*,
base_req=<function <lambda>>,
)[源代码][源代码]

创建一个 ReplaceOptim 的实例用于扩展 Pow

参数:
限制整数

扩展为乘法的最高幂。

base_req返回布尔值的函数

扩展发生的基要求,默认是返回基的 is_symbol 属性。

示例

>>> from sympy import Symbol, sin
>>> from sympy.codegen.rewriting import create_expand_pow_optimization
>>> x = Symbol('x')
>>> expand_opt = create_expand_pow_optimization(3)
>>> expand_opt(x**5 + x**3)
x**5 + x*x*x
>>> expand_opt(x**5 + x**3 + sin(x)**3)
x**5 + sin(x)**3 + x*x*x
>>> opt2 = create_expand_pow_optimization(3, base_req=lambda b: not b.is_Function)
>>> opt2((x+1)**2 + sin(x)**2)
sin(x)**2 + (x + 1)*(x + 1)
sympy.codegen.rewriting.optimize(expr, optimizations)[源代码][源代码]

对表达式应用优化。

参数:
表达式表达式
优化 : Optimization 实例的可迭代对象可迭代对象

优化将根据 priority (最高优先级在前)进行排序。

示例

>>> from sympy import log, Symbol
>>> from sympy.codegen.rewriting import optims_c99, optimize
>>> x = Symbol('x')
>>> optimize(log(x+3)/log(2) + log(x**2 + 1), optims_c99)
log1p(x**2) + log2(x + 3)

用于矩阵操作的附加AST节点。本模块中的节点旨在表示在codegen的目标语言中无法由SymPy表达式表示的矩阵表达式的优化。

作为一个例子,我们可以使用 sympy.codegen.rewriting.optimize()sympy.codegen.rewriting 中提供的 matin_opt 优化来在某些假设下转换矩阵乘法:

>>> from sympy import symbols, MatrixSymbol
>>> n = symbols('n', integer=True)
>>> A = MatrixSymbol('A', n, n)
>>> x = MatrixSymbol('x', n, 1)
>>> expr = A**(-1) * x
>>> from sympy import assuming, Q
>>> from sympy.codegen.rewriting import matinv_opt, optimize
>>> with assuming(Q.fullrank(A)):
...     optimize(expr, [matinv_opt])
MatrixSolve(A, vector=x)
class sympy.codegen.matrix_nodes.MatrixSolve(*args, **kwargs)[源代码][源代码]

表示用于求解线性矩阵方程的操作。

参数:
矩阵MatrixSymbol

表示线性方程中变量系数的矩阵。该矩阵必须是方阵且满秩(即所有列必须是线性独立的),以确保求解操作的有效性。

向量MatrixSymbol

表示在 matrix 中表示的方程的解的单列矩阵。

属性:
T

矩阵转置

args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

cols
expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_Identity
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_polar
is_square
矩阵
形状
向量

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_explicit()

返回一个元素明确表示的密集矩阵

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_mutable()

返回一个密集的、可变的矩阵,其元素明确表示。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other)

在矩阵之间测试逐元素相等性,矩阵类型可能不同

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

from_index_summation(expr[, first_index, ...])

如果可能,将显式求和指标的矩阵表达式解析为无指标的矩阵表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

applyfunc

as_base_exp

as_coeff_mmul

规范化

复制

det

差异

目录

inv

反向

is_hypergeometric

转置

有效索引

示例

>>> from sympy import symbols, MatrixSymbol
>>> from sympy.codegen.matrix_nodes import MatrixSolve
>>> n = symbols('n', integer=True)
>>> A = MatrixSymbol('A', n, n)
>>> x = MatrixSymbol('x', n, 1)
>>> from sympy.printing.numpy import NumPyPrinter
>>> NumPyPrinter().doprint(MatrixSolve(A, x))
'numpy.linalg.solve(A, x)'
>>> from sympy import octave_code
>>> octave_code(MatrixSolve(A, x))
'A \\ x'

用于通过近似简化表达式的工具 (sympy.codegen.approximations)

class sympy.codegen.approximations.SeriesApprox(
bounds,
reltol,
max_order=4,
n_point_checks=4,
**kwargs,
)[源代码][源代码]

通过将函数展开为级数来近似函数。

参数:
边界dict

将表达式映射到长度为2的边界元组 (低, 高)。

reltol数字

忽略术语的阈值。相对于所有下限中最大的下限取值。

max_order整数

系列展开中包含的最大阶数

n_point_checksint (偶数)

扩展的有效性(关于 reltol)在离散点(在变量的范围内线性分布)进行检查。这个数值检查使用的点数由这个数字给出。

方法

__call__(expr)

最便宜的

查询

示例

>>> from sympy import sin, pi
>>> from sympy.abc import x, y
>>> from sympy.codegen.rewriting import optimize
>>> from sympy.codegen.approximations import SeriesApprox
>>> bounds = {x: (-.1, .1), y: (pi-1, pi+1)}
>>> series_approx2 = SeriesApprox(bounds, reltol=1e-2)
>>> series_approx3 = SeriesApprox(bounds, reltol=1e-3)
>>> series_approx8 = SeriesApprox(bounds, reltol=1e-8)
>>> expr = sin(x)*sin(y)
>>> optimize(expr, [series_approx2])
x*(-y + (y - pi)**3/6 + pi)
>>> optimize(expr, [series_approx3])
(-x**3/6 + x)*sin(y)
>>> optimize(expr, [series_approx8])
sin(x)*sin(y)
class sympy.codegen.approximations.SumApprox(bounds, reltol, **kwargs)[源代码][源代码]

通过忽略小项来近似求和。

参数:
边界dict

将表达式映射到长度为2的边界元组 (低, 高)。

reltol数字

忽略术语的阈值。相对于所有下限中最大的下限取值。

方法

__call__(expr)

最便宜的

查询

示例

>>> from sympy import exp
>>> from sympy.abc import x, y, z
>>> from sympy.codegen.rewriting import optimize
>>> from sympy.codegen.approximations import SumApprox
>>> bounds = {x: (-1, 1), y: (1000, 2000), z: (-10, 3)}
>>> sum_approx3 = SumApprox(bounds, reltol=1e-3)
>>> sum_approx2 = SumApprox(bounds, reltol=1e-2)
>>> sum_approx1 = SumApprox(bounds, reltol=1e-1)
>>> expr = 3*(x + y + exp(z))
>>> optimize(expr, [sum_approx3])
3*(x + y + exp(z))
>>> optimize(expr, [sum_approx2])
3*y + 3*exp(z)
>>> optimize(expr, [sum_approx1])
3*y

抽象语法树的类 (sympy.codegen.ast)

用于将整个函数/模块表示为抽象语法树的类型。

大多数类型都很小,仅用作AST中的标记。下面包含了一个树形图,以说明AST类型之间的关系。

AST 类型树

*Basic*
     |
     |
 CodegenAST
     |
     |--->AssignmentBase
     |             |--->Assignment
     |             |--->AugmentedAssignment
     |                                    |--->AddAugmentedAssignment
     |                                    |--->SubAugmentedAssignment
     |                                    |--->MulAugmentedAssignment
     |                                    |--->DivAugmentedAssignment
     |                                    |--->ModAugmentedAssignment
     |
     |--->CodeBlock
     |
     |
     |--->Token
              |--->Attribute
              |--->For
              |--->String
              |       |--->QuotedString
              |       |--->Comment
              |--->Type
              |       |--->IntBaseType
              |       |              |--->_SizedIntType
              |       |                               |--->SignedIntType
              |       |                               |--->UnsignedIntType
              |       |--->FloatBaseType
              |                        |--->FloatType
              |                        |--->ComplexBaseType
              |                                           |--->ComplexType
              |--->Node
              |       |--->Variable
              |       |           |---> Pointer
              |       |--->FunctionPrototype
              |                            |--->FunctionDefinition
              |--->Element
              |--->Declaration
              |--->While
              |--->Scope
              |--->Stream
              |--->Print
              |--->FunctionCall
              |--->BreakToken
              |--->ContinueToken
              |--->NoneToken
              |--->Return

预定义类型

sympy.codegen.ast 模块中提供了许多 Type 实例以方便使用。对于代码生成(特别是数值代码),最常见的两个可能是 float32float64``(分别称为单精度和双精度)。还有一些类型的通用精度版本(代码打印器在打印时选择底层数据类型):``realintegercomplex_bool_

定义的其他 Type 实例包括:

  • intc: C 语言中“int”使用的整数类型。

  • intp: C语言中“unsigned”使用的整数类型。

  • int8, int16, int32, int64: n位整数。

  • uint8, uint16, uint32, uint64: n位无符号整数。

  • float80: 在现代 x86/amd64 硬件上被称为“扩展精度”。

  • complex64: 由两个 float32 数字表示的复数

  • complex128: 由两个 float64 数字表示的复数

使用节点

可以使用AST节点构建简单的算法。让我们构建一个应用牛顿方法的循环:

>>> from sympy import symbols, cos
>>> from sympy.codegen.ast import While, Assignment, aug_assign, Print, QuotedString
>>> t, dx, x = symbols('tol delta val')
>>> expr = cos(x) - x**3
>>> whl = While(abs(dx) > t, [
...     Assignment(dx, -expr/expr.diff(x)),
...     aug_assign(x, '+', dx),
...     Print([x])
... ])
>>> from sympy import pycode
>>> py_str = pycode(whl)
>>> print(py_str)
while (abs(delta) > tol):
    delta = (val**3 - math.cos(val))/(-3*val**2 - math.sin(val))
    val += delta
    print(val)
>>> import math
>>> tol, val, delta = 1e-5, 0.5, float('inf')
>>> exec(py_str)
1.1121416371
0.909672693737
0.867263818209
0.865477135298
0.865474033111
>>> print('%3.1g' % (math.cos(val) - val**3))
-3e-11

如果我们想为同一个 while 循环生成 Fortran 代码,我们只需调用 fcode:

>>> from sympy import fcode
>>> print(fcode(whl, standard=2003, source_format='free'))
do while (abs(delta) > tol)
   delta = (val**3 - cos(val))/(-3*val**2 - sin(val))
   val = val + delta
   print *, val
end do

sympy.codegen.algorithms 中有一个构造循环(或完整函数)的函数,如下所示。

class sympy.codegen.ast.Assignment(lhs, rhs)[源代码][源代码]

表示代码生成的变量赋值。

参数:
lhs表达式

表示表达式左侧的 SymPy 对象。这些应该是单个对象,例如在编写代码时使用的对象。值得注意的类型包括 Symbol、MatrixSymbol、MatrixElement 和 Indexed。这些类型的子类也受支持。

rhs表达式

表示表达式右侧的 SymPy 对象。这可以是任何类型,前提是其形状与左侧的形状相对应。例如,可以将 Matrix 类型赋值给 MatrixSymbol,但不能赋值给 Symbol,因为维度将不匹配。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
lhs
rhs

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import symbols, MatrixSymbol, Matrix
>>> from sympy.codegen.ast import Assignment
>>> x, y, z = symbols('x, y, z')
>>> Assignment(x, y)
Assignment(x, y)
>>> Assignment(x, 0)
Assignment(x, 0)
>>> A = MatrixSymbol('A', 1, 3)
>>> mat = Matrix([x, y, z]).T
>>> Assignment(A, mat)
Assignment(A, Matrix([[x, y, z]]))
>>> Assignment(A[0, 1], x)
Assignment(A[0, 1], x)
class sympy.codegen.ast.AssignmentBase(lhs, rhs)[源代码][源代码]

Assignment 和 AugmentedAssignment 的抽象基类。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
lhs
rhs

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.Attribute(possibly parametrized)[源代码][源代码]

用于与 sympy.codegen.ast.Node 一起使用(它将 Attribute 的实例作为 attrs )。

参数:
名称str
参数元组
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称
参数

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import Attribute
>>> volatile = Attribute('volatile')
>>> volatile
volatile
>>> print(repr(volatile))
Attribute(String('volatile'))
>>> a = Attribute('foo', [1, 2, 3])
>>> a
foo(1, 2, 3)
>>> a.parameters == (1, 2, 3)
True
class sympy.codegen.ast.AugmentedAssignment(lhs, rhs)[源代码][源代码]

增强赋值的基类。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

二元操作
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
lhs
op
rhs

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.BreakToken(*args, **kwargs)[源代码][源代码]

表示C/Python中的’break’(Fortran中的’exit’)。

使用预制的实例 break_ 或手动实例化。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import ccode, fcode
>>> from sympy.codegen.ast import break_
>>> ccode(break_)
'break'
>>> fcode(break_, source_format='free')
'exit'
class sympy.codegen.ast.CodeBlock(*args)[源代码][源代码]

表示一段代码块。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

cse([symbols, optimizations, postprocess, order])

返回一个新的代码块,其中消除了常见的子表达式。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

topological_sort(assignments)

返回一个代码块,其中赋值按拓扑排序,以便在使用变量之前对其进行赋值。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import symbols, ccode
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y = symbols('x y')
>>> c = CodeBlock(Assignment(x, 1), Assignment(y, x + 1))
>>> print(ccode(c))
x = 1;
y = x + 1;
cse(
symbols=None,
optimizations=None,
postprocess=None,
order='canonical',
)[源代码][源代码]

返回一个新的代码块,其中消除了常见的子表达式。

示例

>>> from sympy import symbols, sin
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y, z = symbols('x y z')
>>> c = CodeBlock(
...     Assignment(x, 1),
...     Assignment(y, sin(x) + 1),
...     Assignment(z, sin(x) - 1),
... )
...
>>> c.cse()
CodeBlock(
    Assignment(x, 1),
    Assignment(x0, sin(x)),
    Assignment(y, x0 + 1),
    Assignment(z, x0 - 1)
)
classmethod topological_sort(assignments)[源代码][源代码]

返回一个代码块,其中赋值按拓扑排序,以便在使用变量之前对其进行赋值。

示例

尽可能保留现有的任务顺序。

此函数假设变量只被赋值一次。

这是一个类构造函数,以便在变量被使用之前未被赋值时,CodeBlock 的默认构造函数可以报错。

>>> from sympy import symbols
>>> from sympy.codegen.ast import CodeBlock, Assignment
>>> x, y, z = symbols('x y z')
>>> assignments = [
...     Assignment(x, y + z),
...     Assignment(y, z + 1),
...     Assignment(z, 2),
... ]
>>> CodeBlock.topological_sort(assignments)
CodeBlock(
    Assignment(z, 2),
    Assignment(y, z + 1),
    Assignment(x, y + z)
)
class sympy.codegen.ast.Comment(*args, **kwargs)[源代码][源代码]

表示一个注释。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
文本

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule[, hack2])

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.ComplexType(*args, **kwargs)[源代码][源代码]

表示一个复杂的浮点数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

decimal_dig

存储和加载时无损所需的位数。

dig

文本中保证保留的小数位数。

eps

1.0 与其下一个可表示值之间的差异。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
max

可表示的最大值。

max_exponent

最大的正数 n,使得 2**(n - 1) 是一个可表示的有限值。

min_exponent

最小的负数 n,使得 2**(n - 1) 是一个有效的规范化数字。

名称
nbits
nexp
nmant
tiny

最小正归一化值。

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

cast_check(value[, rtol, atol, ...])

将值转换为实例的数据类型。

cast_nocheck(value)

不检查是否越界或次正规的类型转换。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

from_expr(expr)

从表达式或 Symbol 推导类型。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.ContinueToken(*args, **kwargs)[源代码][源代码]

表示C/Python中的’continue’(Fortran中的’cycle’)

使用预制的实例 continue_ 或手动实例化。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import ccode, fcode
>>> from sympy.codegen.ast import continue_
>>> ccode(continue_)
'continue'
>>> fcode(continue_, source_format='free')
'cycle'
class sympy.codegen.ast.Declaration(*args, **kwargs)[源代码][源代码]

表示一个变量声明

参数:
变量变量
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
变量

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import Declaration, NoneToken, untyped
>>> z = Declaration('z')
>>> z.variable.type == untyped
True
>>> # value is special NoneToken() which must be tested with == operator
>>> z.variable.value is None  # won't work
False
>>> z.variable.value == None  # not PEP-8 compliant
True
>>> z.variable.value == NoneToken()  # OK
True
class sympy.codegen.ast.Element(*args, **kwargs)[源代码][源代码]

(可能是 N 维的)数组中的元素。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

索引
is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
偏移量
步幅
符号

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import Element
>>> elem = Element('x', 'ijk')
>>> elem.symbol.name == 'x'
True
>>> elem.indices
(i, j, k)
>>> from sympy import ccode
>>> ccode(elem)
'x[i][j][k]'
>>> ccode(Element('x', 'ijk', strides='lmn', offset='o'))
'x[i*l + j*m + k*n + o]'
class sympy.codegen.ast.FloatBaseType(*args, **kwargs)[源代码][源代码]

表示一个浮点数类型。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

cast_check(value[, rtol, atol, ...])

将值转换为实例的数据类型。

cast_nocheck

Float 的别名

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

from_expr(expr)

从表达式或 Symbol 推导类型。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

cast_nocheck[源代码]

Float 的别名

class sympy.codegen.ast.FloatType(*args, **kwargs)[源代码][源代码]

表示具有固定位宽的浮点类型。

基数为2,假设有一个符号位。

参数:
名称str

类型的名称。

nbits整数

使用的位数(存储)。

nmant整数

用于表示尾数的位数。

nexp整数

用于表示尾数的位数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

decimal_dig

存储和加载时无损所需的位数。

dig

文本中保证保留的小数位数。

eps

1.0 与其下一个可表示值之间的差异。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
max

可表示的最大值。

max_exponent

最大的正数 n,使得 2**(n - 1) 是一个可表示的有限值。

min_exponent

最小的负数 n,使得 2**(n - 1) 是一个有效的规范化数字。

名称
nbits
nexp
nmant
tiny

最小正归一化值。

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

cast_check(value[, rtol, atol, ...])

将值转换为实例的数据类型。

cast_nocheck(value)

不检查是否越界或次正规的类型转换。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

from_expr(expr)

从表达式或 Symbol 推导类型。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import S
>>> from sympy.codegen.ast import FloatType
>>> half_precision = FloatType('f16', nbits=16, nmant=10, nexp=5)
>>> half_precision.max
65504
>>> half_precision.tiny == S(2)**-14
True
>>> half_precision.eps == S(2)**-10
True
>>> half_precision.dig == 3
True
>>> half_precision.decimal_dig == 5
True
>>> half_precision.cast_check(1.0)
1.0
>>> half_precision.cast_check(1e5)  
Traceback (most recent call last):
  ...
ValueError: Maximum value for data type smaller than new value.
cast_nocheck(value)[源代码][源代码]

不检查是否越界或次正规的类型转换。

property decimal_dig

存储和加载时无损所需的位数。

property dig

文本中保证保留的小数位数。

在将文本 -> 浮点数 -> 文本转换时,您可以保证至少 dig 位数字在舍入或溢出时得到保留。

property eps

1.0 与其下一个可表示值之间的差异。

property max

可表示的最大值。

property max_exponent

最大的正数 n,使得 2**(n - 1) 是一个可表示的有限值。

property min_exponent

最小的负数 n,使得 2**(n - 1) 是一个有效的规范化数字。

property tiny

最小正归一化值。

class sympy.codegen.ast.For(*args, **kwargs)[源代码][源代码]

表示代码中的 ‘for-循环’。

表达式的形式为:
对于 iter 中的目标:

body…

参数:
目标符号

iter : 可迭代体 : CodeBlock 或 可迭代

! 当传递一个可迭代对象时,它用于实例化一个 CodeBlock。
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
可迭代对象
目标

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import symbols, Range
>>> from sympy.codegen.ast import aug_assign, For
>>> x, i, j, k = symbols('x i j k')
>>> for_i = For(i, Range(10), [aug_assign(x, '+', i*j*k)])
>>> for_i  
For(i, iterable=Range(0, 10, 1), body=CodeBlock(
    AddAugmentedAssignment(x, i*j*k)
))
>>> for_ji = For(j, Range(7), [for_i])
>>> for_ji  
For(j, iterable=Range(0, 7, 1), body=CodeBlock(
    For(i, iterable=Range(0, 10, 1), body=CodeBlock(
        AddAugmentedAssignment(x, i*j*k)
    ))
))
>>> for_kji =For(k, Range(5), [for_ji])
>>> for_kji  
For(k, iterable=Range(0, 5, 1), body=CodeBlock(
    For(j, iterable=Range(0, 7, 1), body=CodeBlock(
        For(i, iterable=Range(0, 10, 1), body=CodeBlock(
            AddAugmentedAssignment(x, i*j*k)
        ))
    ))
))
class sympy.codegen.ast.FunctionCall(*args, **kwargs)[源代码][源代码]

表示代码中对函数的调用。

参数:
名称str
函数参数元组
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

函数参数
is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

示例

>>> from sympy.codegen.ast import FunctionCall
>>> from sympy import pycode
>>> fcall = FunctionCall('foo', 'bar baz'.split())
>>> print(pycode(fcall))
foo(bar, baz)
class sympy.codegen.ast.FunctionDefinition(*args, **kwargs)[源代码][源代码]

表示代码中的函数定义。

参数:
返回类型类型
名称str
参数: Variable 实例的可迭代对象
正文代码块或可迭代对象
属性Attribute 实例的可迭代对象
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称
参数
返回类型

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

from_函数定义

from_FunctionPrototype

is_hypergeometric

示例

>>> from sympy import ccode, symbols
>>> from sympy.codegen.ast import real, FunctionPrototype
>>> x, y = symbols('x y', real=True)
>>> fp = FunctionPrototype(real, 'foo', [x, y])
>>> ccode(fp)
'double foo(double x, double y)'
>>> from sympy.codegen.ast import FunctionDefinition, Return
>>> body = [Return(x*y)]
>>> fd = FunctionDefinition.from_FunctionPrototype(fp, body)
>>> print(ccode(fd))
double foo(double x, double y){
    return x*y;
}
class sympy.codegen.ast.FunctionPrototype(*args, **kwargs)[源代码][源代码]

表示一个函数原型

允许用户在例如 C/C++ 中生成前置声明。

参数:
返回类型类型
名称str
参数: Variable 实例的可迭代对象
属性Attribute 实例的可迭代对象
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称
参数
返回类型

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

from_函数定义

is_hypergeometric

示例

>>> from sympy import ccode, symbols
>>> from sympy.codegen.ast import real, FunctionPrototype
>>> x, y = symbols('x y', real=True)
>>> fp = FunctionPrototype(real, 'foo', [x, y])
>>> ccode(fp)
'double foo(double x, double y)'
class sympy.codegen.ast.IntBaseType(*args, **kwargs)[源代码][源代码]

整数基类型,不包含大小信息。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

cast_check(value[, rtol, atol, ...])

将值转换为实例的数据类型。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

from_expr(expr)

从表达式或 Symbol 推导类型。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

cast_nocheck

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.Node(*args, **kwargs)[源代码][源代码]

Token 的子类,携带属性 ‘attrs’ (元组)

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import Node, value_const, pointer_const
>>> n1 = Node([value_const])
>>> n1.attr_params('value_const')  # get the parameters of attribute (by name)
()
>>> from sympy.codegen.fnodes import dimension
>>> n2 = Node([value_const, dimension(5, 3)])
>>> n2.attr_params(value_const)  # get the parameters of attribute (by Attribute instance)
()
>>> n2.attr_params('dimension')  # get the parameters of attribute (by name)
(5, 3)
>>> n2.attr_params(pointer_const) is None
True
attr_params(looking_for)[源代码][源代码]

返回 self.attrs 中名为 looking_for 的属性的参数

class sympy.codegen.ast.NoneToken(*args, **kwargs)[源代码][源代码]

Python 的 NoneType 的 AST 等价物

Python 的 None 对应的实例是 none

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import none, Variable
>>> from sympy import pycode
>>> print(pycode(Variable('x').as_Declaration(value=none)))
x = None
class sympy.codegen.ast.Pointer(*args, **kwargs)[源代码][源代码]

表示一个指针。参见 Variable

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
符号
类型

方法

as_Declaration(**kwargs)

创建 Declaration 实例的便捷方法。

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

deduced(symbol[, value, attrs, cast_check])

替代。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

可以创建 Element 的实例:

>>> from sympy import Symbol
>>> from sympy.codegen.ast import Pointer
>>> i = Symbol('i', integer=True)
>>> p = Pointer('x')
>>> p[i+1]
Element(x, indices=(i + 1,))
class sympy.codegen.ast.Print(*args, **kwargs)[源代码][源代码]

表示代码中的打印命令。

参数:
格式字符串str
*args基本实例(或可通过 sympify 转换为基本实例)
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
文件
format_string
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
print_args

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import Print
>>> from sympy import pycode
>>> print(pycode(Print('x y'.split(), "coordinate: %12.5g %12.5g\\n")))
print("coordinate: %12.5g %12.5g\n" % (x, y), end="")
class sympy.codegen.ast.QuotedString(*args, **kwargs)[源代码][源代码]

表示一个应该用引号打印的字符串。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
文本

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule[, hack2])

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.Raise(*args, **kwargs)[源代码][源代码]

在Python中打印为’raise …’,在C++中打印为’throw …’

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

异常
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.Return(*args, **kwargs)[源代码][源代码]

表示代码中的返回命令。

参数:
返回基本
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
返回

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import Return
>>> from sympy.printing.pycode import pycode
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> print(pycode(Return(x)))
return x
class sympy.codegen.ast.RuntimeError_(*args, **kwargs)[源代码][源代码]

表示C++中的’std::runtime_error’和Python中的’RuntimeError’。

请注意,后者并不常见,你可能想要使用例如 ValueError。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
消息

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.Scope(*args, **kwargs)[源代码][源代码]

表示代码中的一个作用域。

参数:
正文代码块或可迭代对象

当传递一个可迭代对象时,它用于实例化一个 CodeBlock。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.SignedIntType(*args, **kwargs)[源代码][源代码]

表示有符号整数类型。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
最大值
最小值
名称
nbits

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

cast_check(value[, rtol, atol, ...])

将值转换为实例的数据类型。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

from_expr(expr)

从表达式或 Symbol 推导类型。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

cast_nocheck

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.Stream(*args, **kwargs)[源代码][源代码]

表示一个流。

有两个预定义的 Stream 实例 stdoutstderr

参数:
名称str
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import pycode, Symbol
>>> from sympy.codegen.ast import Print, stderr, QuotedString
>>> print(pycode(Print(['x'], file=stderr)))
print(x, file=sys.stderr)
>>> x = Symbol('x')
>>> print(pycode(Print([QuotedString('x')], file=stderr)))  # print literally "x"
print("x", file=sys.stderr)
class sympy.codegen.ast.String(*args, **kwargs)[源代码][源代码]

表示字符串的 SymPy 对象。

不是表达式的原子对象(与符号相对)。

参数:
文本str
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
文本

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule[, hack2])

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import String
>>> f = String('foo')
>>> f
foo
>>> str(f)
'foo'
>>> f.text
'foo'
>>> print(repr(f))
String('foo')
class sympy.codegen.ast.Token(*args, **kwargs)[源代码][源代码]

AST 类型的基类。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

kwargs(exclude=(), apply=None)[源代码][源代码]

将实例的属性作为关键字参数的字典获取。

参数:
排除字符串集合

要排除的关键词集合。

应用可调用,可选

应用于所有值的函数。

class sympy.codegen.ast.Type(*args, **kwargs)[源代码][源代码]

表示一种类型。

参数:
名称str

类型的名称,例如 objectint16float16``(后两者分别使用 ``Type 子类 IntTypeFloatType)。如果给定一个 Type 实例,则返回该实例。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

cast_check(value[, rtol, atol, ...])

将值转换为实例的数据类型。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

from_expr(expr)

从表达式或 Symbol 推导类型。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

参考文献

示例

>>> from sympy.codegen.ast import Type
>>> t = Type.from_expr(42)
>>> t
integer
>>> print(repr(t))
IntBaseType(String('integer'))
>>> from sympy.codegen.ast import uint8
>>> uint8.cast_check(-1)   
Traceback (most recent call last):
  ...
ValueError: Minimum value for data type bigger than new value.
>>> from sympy.codegen.ast import float32
>>> v6 = 0.123456
>>> float32.cast_check(v6)
0.123456
>>> v10 = 12345.67894
>>> float32.cast_check(v10)  
Traceback (most recent call last):
  ...
ValueError: Casting gives a significantly different value.
>>> boost_mp50 = Type('boost::multiprecision::cpp_dec_float_50')
>>> from sympy import cxxcode
>>> from sympy.codegen.ast import Declaration, Variable
>>> cxxcode(Declaration(Variable('x', type=boost_mp50)))
'boost::multiprecision::cpp_dec_float_50 x'
cast_check(
value,
rtol=None,
atol=0,
precision_targets=None,
)[源代码][源代码]

将值转换为实例的数据类型。

参数:
数字
rtol浮点数

相对容差。(如果未给出,将会推导出)。

atol浮点数

绝对容差(除了 rtol 之外)。

类型别名dict

类型映射替换,例如 {integer: int64, real: float32}

示例

>>> from sympy.codegen.ast import integer, float32, int8
>>> integer.cast_check(3.0) == 3
True
>>> float32.cast_check(1e-40)  
Traceback (most recent call last):
  ...
ValueError: Minimum value for data type bigger than new value.
>>> int8.cast_check(256)  
Traceback (most recent call last):
  ...
ValueError: Maximum value for data type smaller than new value.
>>> v10 = 12345.67894
>>> float32.cast_check(v10)  
Traceback (most recent call last):
  ...
ValueError: Casting gives a significantly different value.
>>> from sympy.codegen.ast import float64
>>> float64.cast_check(v10)
12345.67894
>>> from sympy import Float
>>> v18 = Float('0.123456789012345646')
>>> float64.cast_check(v18)
Traceback (most recent call last):
  ...
ValueError: Casting gives a significantly different value.
>>> from sympy.codegen.ast import float80
>>> float80.cast_check(v18)
0.123456789012345649
classmethod from_expr(expr)[源代码][源代码]

从表达式或 Symbol 推导类型。

参数:
表达式数字或 SymPy 对象

类型将从类型或属性中推断。

Raises:
类型推导失败时抛出 ValueError。

示例

>>> from sympy.codegen.ast import Type, integer, complex_
>>> Type.from_expr(2) == integer
True
>>> from sympy import Symbol
>>> Type.from_expr(Symbol('z', complex=True)) == complex_
True
>>> Type.from_expr(sum)  
Traceback (most recent call last):
  ...
ValueError: Could not deduce type from expr.
class sympy.codegen.ast.UnsignedIntType(*args, **kwargs)[源代码][源代码]

表示一个无符号整数类型。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
最大值
最小值
名称
nbits

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

cast_check(value[, rtol, atol, ...])

将值转换为实例的数据类型。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

from_expr(expr)

从表达式或 Symbol 推导类型。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

cast_nocheck

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.ast.Variable(*args, **kwargs)[源代码][源代码]

表示一个变量。

参数:
符号符号
类型类型 (可选)

变量的类型。

属性Attribute 实例的可迭代对象

将被存储为一个元组。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
符号
类型

方法

as_Declaration(**kwargs)

创建 Declaration 实例的便捷方法。

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

deduced(symbol[, value, attrs, cast_check])

替代。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import Symbol
>>> from sympy.codegen.ast import Variable, float32, integer
>>> x = Symbol('x')
>>> v = Variable(x, type=float32)
>>> v.attrs
()
>>> v == Variable('x')
False
>>> v == Variable('x', type=float32)
True
>>> v
Variable(x, type=float32)

也可以使用 deduced 类方法,根据对符号的假设推断类型来构造一个 Variable 实例:

>>> i = Symbol('i', integer=True)
>>> v = Variable.deduced(i)
>>> v.type == integer
True
>>> v == Variable('i')
False
>>> from sympy.codegen.ast import value_const
>>> value_const in v.attrs
False
>>> w = Variable('w', attrs=[value_const])
>>> w
Variable(w, attrs=(value_const,))
>>> value_const in w.attrs
True
>>> w.as_Declaration(value=42)
Declaration(Variable(w, value=42, attrs=(value_const,)))
as_Declaration(**kwargs)[源代码][源代码]

创建 Declaration 实例的便捷方法。

示例

>>> from sympy.codegen.ast import Variable, NoneToken
>>> x = Variable('x')
>>> decl1 = x.as_Declaration()
>>> # value is special NoneToken() which must be tested with == operator
>>> decl1.variable.value is None  # won't work
False
>>> decl1.variable.value == None  # not PEP-8 compliant
True
>>> decl1.variable.value == NoneToken()  # OK
True
>>> decl2 = x.as_Declaration(value=42.0)
>>> decl2.variable.value == 42.0
True
classmethod deduced(
symbol,
value=None,
attrs=(),
cast_check=True,
)[源代码][源代码]

带有类型推导的替代构造函数,来自 Type.from_expr

主要从 symbol 推导类型,其次从 value 推导。

参数:
符号符号
表达式

(可选)变量的值。

属性Attribute 实例的可迭代对象
cast_check布尔

是否对 value 应用 Type.cast_check

示例

>>> from sympy import Symbol
>>> from sympy.codegen.ast import Variable, complex_
>>> n = Symbol('n', integer=True)
>>> str(Variable.deduced(n).type)
'integer'
>>> x = Symbol('x', real=True)
>>> v = Variable.deduced(x)
>>> v.type
real
>>> z = Symbol('z', complex=True)
>>> Variable.deduced(z).type == complex_
True
class sympy.codegen.ast.While(*args, **kwargs)[源代码][源代码]

表示代码中的 ‘for-循环’。

表达式的形式为:
while 条件:

body…

参数:
条件可转换为布尔值的表达式
正文代码块或可迭代对象

当传递一个可迭代对象时,它用于实例化一个 CodeBlock。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

条件
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import symbols, Gt, Abs
>>> from sympy.codegen import aug_assign, Assignment, While
>>> x, dx = symbols('x dx')
>>> expr = 1 - x**2
>>> whl = While(Gt(Abs(dx), 1e-9), [
...     Assignment(dx, -expr/expr.diff(x)),
...     aug_assign(x, '+', dx)
... ])
sympy.codegen.ast.aug_assign(lhs, op, rhs)[源代码][源代码]

创建 ‘lhs op= rhs’。

参数:
lhs表达式

表示表达式左侧的 SymPy 对象。这些应该是单个对象,例如在编写代码时使用的对象。值得注意的类型包括 Symbol、MatrixSymbol、MatrixElement 和 Indexed。这些类型的子类也受支持。

opstr

运算符(+、-、/、*、%)。

rhs表达式

表示表达式右侧的 SymPy 对象。这可以是任何类型,前提是其形状与左侧的形状相对应。例如,可以将 Matrix 类型赋值给 MatrixSymbol,但不能赋值给 Symbol,因为维度将不匹配。

示例

>>> from sympy import symbols
>>> from sympy.codegen.ast import aug_assign
>>> x, y = symbols('x, y')
>>> aug_assign(x, '+', y)
AddAugmentedAssignment(x, y)

特殊C数学函数 (sympy.codegen.cfunctions)

此模块包含与C标准库(自C99起,也可在C++11中使用)中的特殊数学函数相对应的SymPy函数。

本模块中定义的函数允许用户将诸如 expm1 之类的函数表示为 SymPy 函数,以便进行符号操作。

class sympy.codegen.cfunctions.Cbrt(*args)[源代码][源代码]

表示立方根函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

Sqrt

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import Cbrt
>>> Cbrt(x)
Cbrt(x)
>>> Cbrt(x).diff(x)
1/(3*x**(2/3))
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.Sqrt(*args)[源代码][源代码]

表示平方根函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

Cbrt

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import Sqrt
>>> Sqrt(x)
Sqrt(x)
>>> Sqrt(x).diff(x)
1/(2*sqrt(x))
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.exp2(arg)[源代码][源代码]

表示以 2 为底的指数函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(arg)

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

log2

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import exp2
>>> exp2(2).evalf() == 4.0
True
>>> exp2(x).diff(x)
log(2)*exp2(x)
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.expm1(arg)[源代码][源代码]

表示指数函数减一。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(arg)

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

log1p

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import expm1
>>> '%.0e' % expm1(1e-99).evalf()
'1e-99'
>>> from math import exp
>>> exp(1e-99) - 1
0.0
>>> expm1(x).diff(x)
exp(x)
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.fma(*args)[源代码][源代码]

表示“融合乘加”。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

示例

>>> from sympy.abc import x, y, z
>>> from sympy.codegen.cfunctions import fma
>>> fma(x, y, z).diff(x)
y
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.hypot(*args)[源代码][源代码]

表示直角三角形的斜边函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

示例

>>> from sympy.abc import x, y
>>> from sympy.codegen.cfunctions import hypot
>>> hypot(3, 4).evalf() == 5.0
True
>>> hypot(x, y)
hypot(x, y)
>>> hypot(x, y).diff(x)
x/hypot(x, y)
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.log10(arg)[源代码][源代码]

表示以十为底的对数函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(arg)

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

log2

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log10
>>> log10(100).evalf() == 2.0
True
>>> log10(x).diff(x)
1/(x*log(10))
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.log1p(arg)[源代码][源代码]

表示一个数加一的自然对数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(arg)

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

expm1

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log1p
>>> from sympy import expand_log
>>> '%.0e' % expand_log(log1p(1e-99)).evalf()
'1e-99'
>>> from math import log
>>> log(1 + 1e-99)
0.0
>>> log1p(x).diff(x)
1/(x + 1)
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

class sympy.codegen.cfunctions.log2(arg)[源代码][源代码]

表示以二为底的对数函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(arg)

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回此函数的一阶导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

exp2
log10

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log2
>>> log2(4).evalf() == 2.0
True
>>> log2(x).diff(x)
1/(x*log(2))
fdiff(argindex=1)[源代码][源代码]

返回此函数的一阶导数。

C 特定的 AST 节点 (sympy.codegen.cnodes)

特定于 C 语言家族的 AST 节点

class sympy.codegen.cnodes.CommaOperator(*args)[源代码][源代码]

表示C语言中的逗号运算符

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.cnodes.Label(*args, **kwargs)[源代码][源代码]

用于例如 goto 语句的标签。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import ccode, Symbol
>>> from sympy.codegen.cnodes import Label, PreIncrement
>>> print(ccode(Label('foo')))
foo:
>>> print(ccode(Label('bar', [PreIncrement(Symbol('a'))])))
bar:
++(a);
class sympy.codegen.cnodes.PostDecrement(*args)[源代码][源代码]

表示后递减运算符

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cnodes import PostDecrement
>>> from sympy import ccode
>>> ccode(PostDecrement(x))
'(x)--'
class sympy.codegen.cnodes.PostIncrement(*args)[源代码][源代码]

表示后置递增运算符

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cnodes import PostIncrement
>>> from sympy import ccode
>>> ccode(PostIncrement(x))
'(x)++'
class sympy.codegen.cnodes.PreDecrement(*args)[源代码][源代码]

表示前置递减运算符

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cnodes import PreDecrement
>>> from sympy import ccode
>>> ccode(PreDecrement(x))
'--(x)'
class sympy.codegen.cnodes.PreIncrement(*args)[源代码][源代码]

表示前置递增运算符

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.abc import x
>>> from sympy.codegen.cnodes import PreIncrement
>>> from sympy import ccode
>>> ccode(PreIncrement(x))
'++(x)'
sympy.codegen.cnodes.alignof(arg)[源代码][源代码]

为调用 ‘alignof’ 生成 FunctionCall 实例

class sympy.codegen.cnodes.goto(*args, **kwargs)[源代码][源代码]

表示C语言中的goto

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
标签

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

sympy.codegen.cnodes.sizeof(arg)[源代码][源代码]

为调用 ‘sizeof’ 生成 FunctionCall 实例

示例

>>> from sympy.codegen.ast import real
>>> from sympy.codegen.cnodes import sizeof
>>> from sympy import ccode
>>> ccode(sizeof(real))
'sizeof(double)'
class sympy.codegen.cnodes.struct(*args, **kwargs)[源代码][源代码]

表示C语言中的一个结构体

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

声明
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

class sympy.codegen.cnodes.union(*args, **kwargs)[源代码][源代码]

表示C语言中的联合体

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

声明
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

C++ 特定的 AST 节点 (sympy.codegen.cxxnodes)

特定于 C++ 的 AST 节点

class sympy.codegen.cxxnodes.using(*args, **kwargs)[源代码][源代码]

表示C++中的’using’语句

属性:
别名
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
类型

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

Fortran 特定的 AST 节点 (sympy.codegen.fnodes)

特定于 Fortran 的 AST 节点。

本模块中定义的函数允许用户将 dsign 等函数表示为用于符号操作的 SymPy 函数。

class sympy.codegen.fnodes.ArrayConstructor(*args, **kwargs)[源代码][源代码]

表示一个数组构造器。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

元素
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import fcode
>>> from sympy.codegen.fnodes import ArrayConstructor
>>> ac = ArrayConstructor([1, 2, 3])
>>> fcode(ac, standard=95, source_format='free')
'(/1, 2, 3/)'
>>> fcode(ac, standard=2003, source_format='free')
'[1, 2, 3]'
class sympy.codegen.fnodes.Do(*args, **kwargs)[源代码][源代码]

表示Fortran中的Do循环。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

并发
计数器
expr_free_symbols
第一
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
最后
步骤

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import fcode, symbols
>>> from sympy.codegen.ast import aug_assign, Print
>>> from sympy.codegen.fnodes import Do
>>> i, n = symbols('i n', integer=True)
>>> r = symbols('r', real=True)
>>> body = [aug_assign(r, '+', 1/i), Print([i, r])]
>>> do1 = Do(body, i, 1, n)
>>> print(fcode(do1, source_format='free'))
do i = 1, n
    r = r + 1d0/i
    print *, i, r
end do
>>> do2 = Do(body, i, 1, n, 2)
>>> print(fcode(do2, source_format='free'))
do i = 1, n, 2
    r = r + 1d0/i
    print *, i, r
end do
class sympy.codegen.fnodes.Extent(*args)[源代码][源代码]

表示一个维度范围。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.fnodes import Extent
>>> e = Extent(-3, 3)  # -3, -2, -1, 0, 1, 2, 3
>>> from sympy import fcode
>>> fcode(e, source_format='free')
'-3:3'
>>> from sympy.codegen.ast import Variable, real
>>> from sympy.codegen.fnodes import dimension, intent_out
>>> dim = dimension(e, e)
>>> arr = Variable('x', real, attrs=[dim, intent_out])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'real*8, dimension(-3:3, -3:3), intent(out) :: x'
class sympy.codegen.fnodes.FortranReturn(*args, **kwargs)[源代码][源代码]

AST 节点显式映射到 Fortran 的 “return”。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
返回值

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.fnodes import FortranReturn
>>> from sympy import fcode
>>> fcode(FortranReturn('x'))
'       return x'
class sympy.codegen.fnodes.GoTo(*args, **kwargs)[源代码][源代码]

表示Fortran中的goto语句

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

表达式
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
标签

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.fnodes import GoTo
>>> go = GoTo([10, 20, 30], 'i')
>>> from sympy import fcode
>>> fcode(go, source_format='free')
'go to (10, 20, 30), i'
class sympy.codegen.fnodes.ImpliedDoLoop(*args, **kwargs)[源代码][源代码]

表示Fortran中的隐式do循环。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

计数器
表达式
expr_free_symbols
第一
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
最后
步骤

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import Symbol, fcode
>>> from sympy.codegen.fnodes import ImpliedDoLoop, ArrayConstructor
>>> i = Symbol('i', integer=True)
>>> idl = ImpliedDoLoop(i**3, i, -3, 3, 2)  # -27, -1, 1, 27
>>> ac = ArrayConstructor([-28, idl, 28]) # -28, -27, -1, 1, 27, 28
>>> fcode(ac, standard=2003, source_format='free')
'[-28, (i**3, i = -3, 3, 2), 28]'
class sympy.codegen.fnodes.Module(*args, **kwargs)[源代码][源代码]

表示Fortran中的一个模块。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

声明
定义
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.fnodes import Module
>>> from sympy import fcode
>>> print(fcode(Module('signallib', ['implicit none'], []), source_format='free'))
module signallib
implicit none

contains


end module
class sympy.codegen.fnodes.Program(*args, **kwargs)[源代码][源代码]

表示Fortran中的一个’program’块。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Program
>>> prog = Program('myprogram', [Print([42])])
>>> from sympy import fcode
>>> print(fcode(prog, source_format='free'))
program myprogram
    print *, 42
end program
class sympy.codegen.fnodes.Subroutine(*args, **kwargs)[源代码][源代码]

表示Fortran中的一个子程序。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

属性
正文
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称
参数

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

attr_params(looking_for)

返回 self.attrs 中名为 looking_for 的属性的参数

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import fcode, symbols
>>> from sympy.codegen.ast import Print
>>> from sympy.codegen.fnodes import Subroutine
>>> x, y = symbols('x y', real=True)
>>> sub = Subroutine('mysub', [x, y], [Print([x**2 + y**2, x*y])])
>>> print(fcode(sub, source_format='free', standard=2003))
subroutine mysub(x, y)
real*8 :: x
real*8 :: y
print *, x**2 + y**2, x*y
end subroutine
class sympy.codegen.fnodes.SubroutineCall(*args, **kwargs)[源代码][源代码]

表示在 Fortran 中对子程序的调用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
名称
子程序参数

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.fnodes import SubroutineCall
>>> from sympy import fcode
>>> fcode(SubroutineCall('mysub', 'x y'.split()))
'       call mysub(x, y)'
sympy.codegen.fnodes.allocated(array)[源代码][源代码]

为Fortran的“allocated(…)”函数调用创建一个AST节点

示例

>>> from sympy import fcode
>>> from sympy.codegen.fnodes import allocated
>>> alloc = allocated('x')
>>> fcode(alloc, source_format='free')
'allocated(x)'
sympy.codegen.fnodes.array(
symbol,
dim,
intent=None,
*,
attrs=(),
value=None,
type=None,
)[源代码][源代码]

用于为 Fortran 数组创建 Variable 实例的便捷函数。

参数:
符号符号
暗淡属性或可迭代对象

如果 dim 是一个 Attribute,它需要有名称 ‘dimension’。如果它不是一个 Attribute,那么它将被传递给 dimension() 作为 *dim

意图str

其中之一:’in’, ‘out’, ‘inout’ 或 None

**kwargs:

Variable 的关键字参数(’type’ 和 ‘value’)

示例

>>> from sympy import fcode
>>> from sympy.codegen.ast import integer, real
>>> from sympy.codegen.fnodes import array
>>> arr = array('a', '*', 'in', type=integer)
>>> print(fcode(arr.as_Declaration(), source_format='free', standard=2003))
integer*4, dimension(*), intent(in) :: a
>>> x = array('x', [3, ':', ':'], intent='out', type=real)
>>> print(fcode(x.as_Declaration(value=1), source_format='free', standard=2003))
real*8, dimension(3, :, :), intent(out) :: x = 1
sympy.codegen.fnodes.bind_C(name=None)[源代码][源代码]

创建一个名为 bind_C 的属性。

参数:
名称str

示例

>>> from sympy import fcode, Symbol
>>> from sympy.codegen.ast import FunctionDefinition, real, Return
>>> from sympy.codegen.fnodes import array, sum_, bind_C
>>> a = Symbol('a', real=True)
>>> s = Symbol('s', integer=True)
>>> arr = array(a, dim=[s], intent='in')
>>> body = [Return((sum_(a**2)/s)**.5)]
>>> fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')])
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a, s) bind(C, name="rms")
real*8, dimension(s), intent(in) :: a
integer*4 :: s
rms = sqrt(sum(a**2)/s)
end function
class sympy.codegen.fnodes.cmplx(*args)[源代码][源代码]

Fortran 复数转换函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回函数的导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

sympy.codegen.fnodes.dimension(*args)[源代码][源代码]

创建一个具有(最多7个)范围的’dimension’属性。

示例

>>> from sympy import fcode
>>> from sympy.codegen.fnodes import dimension, intent_in
>>> dim = dimension('2', ':')  # 2 rows, runtime determined number of columns
>>> from sympy.codegen.ast import Variable, integer
>>> arr = Variable('a', integer, attrs=[dim, intent_in])
>>> fcode(arr.as_Declaration(), source_format='free', standard=2003)
'integer*4, dimension(2, :), intent(in) :: a'
class sympy.codegen.fnodes.dsign(*args)[源代码][源代码]

Fortran 双精度参数的符号内在函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回函数的导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

class sympy.codegen.fnodes.isign(*args)[源代码][源代码]

Fortran 整数参数的符号内在函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回函数的导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

class sympy.codegen.fnodes.kind(*args)[源代码][源代码]

Fortran 种类函数。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回函数的导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

sympy.codegen.fnodes.lbound(array, dim=None, kind=None)[源代码][源代码]

创建一个调用 Fortran 的 “lbound(…)” 函数的 AST 节点

参数:
数组符号或字符串
暗淡表达式
种类表达式

示例

>>> from sympy import fcode
>>> from sympy.codegen.fnodes import lbound
>>> lb = lbound('arr', dim=2)
>>> fcode(lb, source_format='free')
'lbound(arr, 2)'
class sympy.codegen.fnodes.literal_dp(num, dps=None, precision=None)[源代码][源代码]

Fortran 双精度实数文字

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_transcendental
is_zero
num

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps[, rational])

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

cofactors(other)

计算 \(self\)\(other\) 的最大公约数和余因子。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

gcd(other)

计算 \(self\)\(other\) 的最大公约数。

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(other, *gens, **args)

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

lcm(other)

计算 \(self\)\(other\) 的最小公倍数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule[, hack2])

伴随

as_base_exp

天花板

复制

差异

目录

epsilon_eq

地板

is_hypergeometric

转置

class sympy.codegen.fnodes.literal_sp(num, dps=None, precision=None)[源代码][源代码]

Fortran 单精度实数字面量

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_transcendental
is_zero
num

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps[, rational])

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

cofactors(other)

计算 \(self\)\(other\) 的最大公约数和余因子。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

gcd(other)

计算 \(self\)\(other\) 的最大公约数。

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(other, *gens, **args)

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

lcm(other)

计算 \(self\)\(other\) 的最小公倍数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule[, hack2])

伴随

as_base_exp

天花板

复制

差异

目录

epsilon_eq

地板

is_hypergeometric

转置

class sympy.codegen.fnodes.merge(*args)[源代码][源代码]

Fortran 合并函数

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

eval(*args)

返回应用于参数 args 的 cls 的规范形式。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

fdiff([argindex])

返回函数的导数。

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

is_singular(a)

测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(**_)

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

sympy.codegen.fnodes.reshape(source, shape, pad=None, order=None)[源代码][源代码]

创建一个用于调用 Fortran 的 “reshape(…)” 函数的 AST 节点

参数:
源代码符号或字符串
形状数组表达式
sympy.codegen.fnodes.shape(source, kind=None)[源代码][源代码]

创建一个用于调用 Fortran 的 “shape(…)” 函数的 AST 节点

参数:
源代码符号或字符串
种类表达式

示例

>>> from sympy import fcode
>>> from sympy.codegen.fnodes import shape
>>> shp = shape('x')
>>> fcode(shp, source_format='free')
'shape(x)'
sympy.codegen.fnodes.size(array, dim=None, kind=None)[源代码][源代码]

创建一个用于调用 Fortran 的 “size(…)” 函数的 AST 节点

示例

>>> from sympy import fcode, Symbol
>>> from sympy.codegen.ast import FunctionDefinition, real, Return
>>> from sympy.codegen.fnodes import array, sum_, size
>>> a = Symbol('a', real=True)
>>> body = [Return((sum_(a**2)/size(a))**.5)]
>>> arr = array(a, dim=[':'], intent='in')
>>> fd = FunctionDefinition(real, 'rms', [arr], body)
>>> print(fcode(fd, source_format='free', standard=2003))
real*8 function rms(a)
real*8, dimension(:), intent(in) :: a
rms = sqrt(sum(a**2)*1d0/size(a))
end function
class sympy.codegen.fnodes.use(*args, **kwargs)[源代码][源代码]

表示Fortran中的一个使用声明。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
命名空间
重命名

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.fnodes import use
>>> from sympy import fcode
>>> fcode(use('signallib'), source_format='free')
'use signallib'
>>> fcode(use('signallib', [('metric', 'snr')]), source_format='free')
'use signallib, metric => snr'
>>> fcode(use('signallib', only=['snr', 'convolution2d']), source_format='free')
'use signallib, only: snr, convolution2d'
class sympy.codegen.fnodes.use_rename(*args, **kwargs)[源代码][源代码]

表示在 Fortran 使用语句中的重命名。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_Atom
is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
本地
原始

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

kwargs([exclude, apply])

将实例的属性作为关键字参数的字典获取。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy.codegen.fnodes import use_rename, use
>>> from sympy import fcode
>>> ren = use_rename("thingy", "convolution2d")
>>> print(fcode(ren, source_format='free'))
thingy => convolution2d
>>> full = use('signallib', only=['snr', ren])
>>> print(fcode(full, source_format='free'))
use signallib, only: snr, thingy => convolution2d

算法 (sympy.codegen.algorithms)

sympy.codegen.algorithms.newtons_method(
expr,
wrt,
atol=1e-12,
delta=None,
*,
rtol=4e-16,
debug=False,
itermax=None,
counter=None,
delta_fn=<function <lambda>>,
cse=False,
handle_nan=None,
bounds=None,
)[源代码][源代码]

生成牛顿-拉夫森方法(一种求根算法)的抽象语法树。

参数:
表达式表达式
wrt符号

关于,即变量是什么。

atol数字或表达式

绝对容差(停止准则)

rtol数字或表达式

相对容差(停止准则)

delta符号

如果为 None ,则将成为 Dummy

调试布尔

是否在迭代过程中打印收敛信息

itermax数字或表达式

最大迭代次数。

计数器符号

如果为 None ,则将成为 Dummy

delta_fn: Callable[[Expr, Symbol], Expr]

计算步长,默认是牛顿法。例如,使用 Halley 法时,使用 delta_fn=lambda e, x: -2*e*e.diff(x)/(2*e.diff(x)**2 - e*e.diff(x, 2))

cse: bool

对 delta 表达式执行公共子表达式消除

handle_nan: Token

如何处理非数字(NaN)的出现。

bounds: 可选[tuple[Expr, Expr]]

在界限内执行优化

参考文献

示例

>>> from sympy import symbols, cos
>>> from sympy.codegen.ast import Assignment
>>> from sympy.codegen.algorithms import newtons_method
>>> x, dx, atol = symbols('x dx atol')
>>> expr = cos(x) - x**3
>>> algo = newtons_method(expr, x, atol=atol, delta=dx)
>>> algo.has(Assignment(dx, -expr/expr.diff(x)))
True
sympy.codegen.algorithms.newtons_method_function(
expr,
wrt,
params=None,
func_name='newton',
attrs=(),
*,
delta=None,
**kwargs,
)[源代码][源代码]

生成一个实现牛顿-拉夫森方法的函数的抽象语法树。

参数:
表达式表达式
wrt符号

关于,即什么是变量

参数符号的可迭代对象

在迭代过程中被视为常量的表达式中出现的符号(这些将被接受为生成函数的参数)。

函数名str

生成的函数名称。

属性元组

作为 attrs 传递给 FunctionDefinition 的属性实例。

**kwargs

传递给 sympy.codegen.algorithms.newtons_method() 的关键字参数。

示例

>>> from sympy import symbols, cos
>>> from sympy.codegen.algorithms import newtons_method_function
>>> from sympy.codegen.pyutils import render_as_module
>>> x = symbols('x')
>>> expr = cos(x) - x**3
>>> func = newtons_method_function(expr, x)
>>> py_mod = render_as_module(func)  # source code as string
>>> namespace = {}
>>> exec(py_mod, namespace, namespace)
>>> res = eval('newton(0.5)', namespace)
>>> abs(res - 0.865474033102) < 1e-12
True

Python 工具 (sympy.codegen.pyutils)

sympy.codegen.pyutils.render_as_module(content, standard='python3')[源代码][源代码]

将Python代码渲染为一个模块(包含所需的导入)。

参数:
标准

请参见 sympy.printing.pycode.pycode() 中的参数 standard

C 工具 (sympy.codegen.cutils)

sympy.codegen.cutils.render_as_source_file(
content,
Printer=<class 'sympy.printing.c.C99CodePrinter'>,
settings=None,
)[源代码][源代码]

渲染一个C源文件(包含必需的#include语句)

Fortran 实用工具 (sympy.codegen.futils)

sympy.codegen.futils.render_as_module(
definitions,
name,
declarations=(),
printer_settings=None,
)[源代码][源代码]

创建一个 Module 实例并将其渲染为字符串。

这将生成带有正确 use 语句的 Fortran 模块源代码。

参数:
定义可迭代对象

传递给 sympy.codegen.fnodes.Module

名称str

传递给 sympy.codegen.fnodes.Module

声明可迭代对象

传递给 sympy.codegen.fnodes.Module 。它将被扩展为使用语句、’implicit none’ 以及从 definitions 生成的公共列表。

打印机设置dict

传递给 FCodePrinter 的参数(默认值:{'standard': 2003, 'source_format': 'free'})。