形式幂级数

计算和操作形式幂级数的方法。

class sympy.series.formal.FormalPowerSeries(*args)[源代码][源代码]

表示函数的形式幂级数。

属性:
ak
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

目录
expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

此方法返回对象中的符号,排除那些具有特定值的符号(即

func

表达式中的顶级函数。

函数
ind
infinite

返回序列的无限表示

interval

该序列定义的区间

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
length

级数展开的长度

start

系列的起始点。

stop

系列的终点。

variables

返回一个变量元组,这些变量已被绑定

x
x0
xk

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

coeff_bell(n)

self.coeff_bell(n) 返回第二类贝尔多项式序列。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compose(other[, x, n])

返回组合函数的形式幂级数的截断项,直到指定的 n

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate([x])

整合形式幂级数。

inverse([x, n])

返回形式幂级数逆的截断项,直到指定的 n

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

polynomial([n])

截断级数作为多项式。

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

product(other[, x, n])

使用离散卷积乘以两个形式幂级数,并返回指定阶数内的截断项。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

term(pt)

系列中在点 pt 的项

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

truncate([n])

截断系列。

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

is_hypergeometric

转置

zero_coeff

coeff_bell(n)[源代码][源代码]

self.coeff_bell(n) 返回第二类贝尔多项式序列。注意 n 应该是一个整数。

第二类贝尔多项式(有时称为“部分”贝尔多项式或不完全贝尔多项式)定义为

\[B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}.\]
  • bell(n, k, (x1, x2, ...)) 给出第二类贝尔多项式,\(B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})\)

compose(other, x=None, n=6)[源代码][源代码]

返回组合函数的形式幂级数的截断项,直到指定的 n

参数:
n数字,可选

指定多项式应截断到的项的顺序。

参考文献

[1]

Comtet, Louis: 高级组合学;有限与无限展开的艺术。Reidel, 1974.

示例

>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(exp(x))
>>> f2 = fps(sin(x))
>>> f1.compose(f2, x).truncate()
1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6)
>>> f1.compose(f2, x).truncate(8)
1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8)
property infinite

返回序列的无限表示

integrate(x=None, **kwargs)[源代码][源代码]

整合形式幂级数。

示例

>>> from sympy import fps, sin, integrate
>>> from sympy.abc import x
>>> f = fps(sin(x))
>>> f.integrate(x).truncate()
-1 + x**2/2 - x**4/24 + O(x**6)
>>> integrate(f, (x, 0, 1))
1 - cos(1)
inverse(x=None, n=6)[源代码][源代码]

返回形式幂级数逆的截断项,直到指定的 n

参数:
n数字,可选

指定多项式应截断到的项的顺序。

参考文献

[1]

Comtet, Louis: 高级组合学;有限与无限展开的艺术。Reidel, 1974.

示例

>>> from sympy import fps, exp, cos
>>> from sympy.abc import x
>>> f1 = fps(exp(x))
>>> f2 = fps(cos(x))
>>> f1.inverse(x).truncate()
1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6)
>>> f2.inverse(x).truncate(8)
1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8)
polynomial(n=6)[源代码][源代码]

截断级数作为多项式。

product(other, x=None, n=6)[源代码][源代码]

使用离散卷积乘以两个形式幂级数,并返回指定阶数内的截断项。

参数:
n数字,可选

指定多项式应截断到的项的顺序。

示例

>>> from sympy import fps, sin, exp
>>> from sympy.abc import x
>>> f1 = fps(sin(x))
>>> f2 = fps(exp(x))
>>> f1.product(f2, x).truncate(4)
x + x**2 + x**3/3 + O(x**4)
truncate(n=6)[源代码][源代码]

截断系列。

sympy.series.formal.fps(
f,
x=None,
x0=0,
dir=1,
hyper=True,
order=4,
rational=True,
full=False,
)[源代码][源代码]

生成 f 的形式幂级数。

参数:
x符号, 可选

如果 x 是 None 且 f 是单变量的,将会提供单变量符号,否则将引发错误。

x0数字,可选

执行级数展开的点。默认值为 0。

目录{1, -1, ‘+’, ‘-‘}, 可选

如果 dir 是 1 或 ‘+’,则从右边计算序列;如果是 -1 或 ‘-’,则从左边计算序列。对于平滑函数,此标志不会改变结果。默认值是 1。

{True, False}, 可选

将 hyper 设置为 False 以跳过超几何算法。默认情况下,它被设置为 False。

顺序int, 可选

f 的导数阶数,默认是 4。

理性{True, False}, 可选

将 rational 设置为 False 以跳过有理算法。默认情况下,它设置为 True。

完整{True, False}, 可选

将 full 设置为 True 以增加有理算法的范围。详情请参阅 rational_algorithm() 。默认情况下,它设置为 False。

示例

>>> from sympy import fps, ln, atan, sin
>>> from sympy.abc import x, n

有理函数

>>> fps(ln(1 + x)).truncate()
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)
>>> fps(atan(x), full=True).truncate()
x - x**3/3 + x**5/5 + O(x**6)

符号函数

>>> fps(x**n*sin(x**2), x).truncate(8)
-x**(n + 6)/6 + x**(n + 2) + O(x**(n + 8))
sympy.series.formal.compute_fps(
f,
x,
x0=0,
dir=1,
hyper=True,
order=4,
rational=True,
full=False,
)[源代码][源代码]

计算函数的形式幂级数公式。

参数:
x符号
x0数字,可选

执行级数展开的点。默认值为 0。

目录{1, -1, ‘+’, ‘-‘}, 可选

如果 dir 是 1 或 ‘+’,则从右边计算序列;如果是 -1 或 ‘-’,则从左边计算序列。对于平滑函数,此标志不会改变结果。默认值是 1。

{True, False}, 可选

将 hyper 设置为 False 以跳过超几何算法。默认情况下,它被设置为 False。

顺序int, 可选

f 的导数阶数,默认是 4。

理性{True, False}, 可选

将 rational 设置为 False 以跳过有理算法。默认情况下,它设置为 True。

完整{True, False}, 可选

将 full 设置为 True 以增加有理算法的范围。详情请参阅 rational_algorithm() 。默认情况下,它设置为 False。

返回:
ak序列

系数序列。

xk序列

x 的幂次序列。

ind表达式

独立条款。

mulPow

常用术语。

class sympy.series.formal.FormalPowerSeriesCompose(*args)[源代码][源代码]

表示两个函数的组合形式幂级数。

属性:
ak
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

目录
expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

f
ffps
free_symbols

此方法返回对象中的符号,排除那些具有特定值的符号(即

func

表达式中的顶级函数。

function

组合形式幂级数的函数。

g
gfps
ind
infinite

返回序列的无限表示

interval

该序列定义的区间

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
length

级数展开的长度

start

系列的起始点。

stop

系列的终点。

variables

返回一个变量元组,这些变量已被绑定

x
x0
xk

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

coeff_bell(n)

self.coeff_bell(n) 返回第二类贝尔多项式序列。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compose(other[, x, n])

返回组合函数的形式幂级数的截断项,直到指定的 n

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(x)

inverse([x, n])

返回形式幂级数逆的截断项,直到指定的 n

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

polynomial(n)

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

product(other[, x, n])

使用离散卷积乘以两个形式幂级数,并返回指定阶数内的截断项。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

term(pt)

系列中在点 pt 的项

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

truncate([n])

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

is_hypergeometric

转置

zero_coeff

property function

组合形式幂级数的函数。

class sympy.series.formal.FormalPowerSeriesInverse(*args)[源代码][源代码]

表示形式幂级数的逆。

属性:
ak
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

目录
expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

f
ffps
free_symbols

此方法返回对象中的符号,排除那些具有特定值的符号(即

func

表达式中的顶级函数。

function

形式幂级数逆的函数。

g
gfps
ind
infinite

返回序列的无限表示

interval

该序列定义的区间

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
length

级数展开的长度

start

系列的起始点。

stop

系列的终点。

variables

返回一个变量元组,这些变量已被绑定

x
x0
xk

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

coeff_bell(n)

self.coeff_bell(n) 返回第二类贝尔多项式序列。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compose(other[, x, n])

返回组合函数的形式幂级数的截断项,直到指定的 n

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(x)

inverse([x, n])

返回形式幂级数逆的截断项,直到指定的 n

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

polynomial(n)

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

product(other[, x, n])

使用离散卷积乘以两个形式幂级数,并返回指定阶数内的截断项。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

term(pt)

系列中在点 pt 的项

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

truncate([n])

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

is_hypergeometric

转置

zero_coeff

property function

形式幂级数逆的函数。

class sympy.series.formal.FormalPowerSeriesProduct(*args)[源代码][源代码]

表示两个函数的形式幂级数之积。

属性:
ak
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

目录
expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

f
ffps
free_symbols

此方法返回对象中的符号,排除那些具有特定值的符号(即

func

表达式中的顶级函数。

function

两个形式幂级数乘积的函数。

g
gfps
ind
infinite

返回序列的无限表示

interval

该序列定义的区间

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
length

级数展开的长度

start

系列的起始点。

stop

系列的终点。

variables

返回一个变量元组,这些变量已被绑定

x
x0
xk

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

coeff_bell(n)

self.coeff_bell(n) 返回第二类贝尔多项式序列。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compose(other[, x, n])

返回组合函数的形式幂级数的截断项,直到指定的 n

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(x)

inverse([x, n])

返回形式幂级数逆的截断项,直到指定的 n

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

polynomial(n)

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

product(other[, x, n])

使用离散卷积乘以两个形式幂级数,并返回指定阶数内的截断项。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

term(pt)

系列中在点 pt 的项

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

truncate([n])

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

is_hypergeometric

转置

zero_coeff

property function

两个形式幂级数乘积的函数。

class sympy.series.formal.FiniteFormalPowerSeries(*args)[源代码][源代码]

产品、组合和逆类的基类

属性:
ak
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

目录
expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

f
ffps
free_symbols

此方法返回对象中的符号,排除那些具有特定值的符号(即

func

表达式中的顶级函数。

函数
g
gfps
ind
infinite

返回序列的无限表示

interval

该序列定义的区间

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
length

级数展开的长度

start

系列的起始点。

stop

系列的终点。

variables

返回一个变量元组,这些变量已被绑定

x
x0
xk

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

coeff_bell(n)

self.coeff_bell(n) 返回第二类贝尔多项式序列。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compose(other[, x, n])

返回组合函数的形式幂级数的截断项,直到指定的 n

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(x)

inverse([x, n])

返回形式幂级数逆的截断项,直到指定的 n

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

polynomial(n)

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

product(other[, x, n])

使用离散卷积乘以两个形式幂级数,并返回指定阶数内的截断项。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

term(pt)

系列中在点 pt 的项

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

truncate([n])

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

is_hypergeometric

转置

zero_coeff

Rational 算法

sympy.series.formal.rational_independent(terms, x)[源代码][源代码]

返回所有有理独立项的列表。

示例

>>> from sympy import sin, cos
>>> from sympy.series.formal import rational_independent
>>> from sympy.abc import x
>>> rational_independent([cos(x), sin(x)], x)
[cos(x), sin(x)]
>>> rational_independent([x**2, sin(x), x*sin(x), x**3], x)
[x**3 + x**2, x*sin(x) + sin(x)]
sympy.series.formal.rational_algorithm(f, x, k, order=4, full=False)[源代码][源代码]

计算函数的形式幂级数系数的合理算法。

参数:
x符号
顺序int, 可选

f 的导数阶数,默认是 4。

完整布尔
返回:
公式表达式
ind表达式

独立条款。

顺序整数
完整布尔

注释

通过设置 full=True,可以使用 rational_algorithm 解决的函数的范围可以增加。由于在 apart() 函数返回的 RootSum 对象上执行 doit,此选项应谨慎使用,因为它可能会显著减慢计算速度。尽可能使用 full=False

参考文献

[1]

形式幂级数 - Dominik Gruntz, Wolfram Koepf

[2]

计算机代数中的幂级数 - Wolfram Koepf

示例

>>> from sympy import log, atan
>>> from sympy.series.formal import rational_algorithm as ra
>>> from sympy.abc import x, k
>>> ra(1 / (1 - x), x, k)
(1, 0, 0)
>>> ra(log(1 + x), x, k)
(-1/((-1)**k*k), 0, 1)
>>> ra(atan(x), x, k, full=True)
((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1)

超几何算法

sympy.series.formal.simpleDE(f, x, g, order=4)[源代码][源代码]

生成简单的 DE。

sympy.series.formal.exp_re(DE, r, k)[源代码][源代码]

将一个具有常系数的微分方程(显式形式)转换为递推方程。

示例

>>> from sympy import Function, Derivative
>>> from sympy.series.formal import exp_re
>>> from sympy.abc import x, k
>>> f, r = Function('f'), Function('r')
>>> exp_re(-f(x) + Derivative(f(x)), r, k)
-r(k) + r(k + 1)
>>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k)
r(k) + r(k + 1)
sympy.series.formal.hyper_re(DE, r, k)[源代码][源代码]

将 DE 转换为 RE。

示例

>>> from sympy import Function, Derivative
>>> from sympy.series.formal import hyper_re
>>> from sympy.abc import x, k
>>> f, r = Function('f'), Function('r')
>>> hyper_re(-f(x) + Derivative(f(x)), r, k)
(k + 1)*r(k + 1) - r(k)
>>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k)
(k + 2)*(k + 3)*r(k + 3) - r(k)
sympy.series.formal.rsolve_hypergeometric(f, x, P, Q, k, m)[源代码][源代码]

求解超几何类型的递推关系。

返回:
公式表达式
ind表达式

独立条款。

顺序整数

参考文献

[1]

形式幂级数 - Dominik Gruntz, Wolfram Koepf

[2]

计算机代数中的幂级数 - Wolfram Koepf

示例

>>> from sympy import exp, ln, S
>>> from sympy.series.formal import rsolve_hypergeometric as rh
>>> from sympy.abc import x, k
>>> rh(exp(x), x, -S.One, (k + 1), k, 1)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
>>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1)
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
 Eq(Mod(k, 1), 0)), (0, True)), x, 2)
sympy.series.formal.solve_de(f, x, DE, order, g, k)[源代码][源代码]

求解微分方程。

返回:
公式表达式
ind表达式

独立条款。

顺序整数

示例

>>> from sympy import Derivative as D, Function
>>> from sympy import exp, ln
>>> from sympy.series.formal import solve_de
>>> from sympy.abc import x, k
>>> f = Function('f')
>>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
>>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k)
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
 Eq(Mod(k, 1), 0)), (0, True)), x, 2)
sympy.series.formal.hyper_algorithm(f, x, k, order=4)[源代码][源代码]

用于计算形式幂级数的超几何算法。

示例

>>> from sympy import exp, ln
>>> from sympy.series.formal import hyper_algorithm
>>> from sympy.abc import x, k
>>> hyper_algorithm(exp(x), x, k)
(Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1)
>>> hyper_algorithm(ln(1 + x), x, k)
(Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1),
 Eq(Mod(k, 1), 0)), (0, True)), x, 2)