sympy.vector 中的基本类 (文档字符串)

class sympy.vector.coordsysrect.CoordSys3D(
name,
transformation=None,
parent=None,
location=None,
rotation_matrix=None,
vector_names=None,
variable_names=None,
)[源代码][源代码]

表示三维空间中的坐标系。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
起源

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

create_new(name, transformation[, ...])

返回一个通过变换与自身连接的 CoordSys3D。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

locate_new(name, position[, vector_names, ...])

返回一个 CoordSys3D,其原点位于相对于此坐标系原点的给定位置。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

orient_new(name, orienters[, location, ...])

创建一个新的 CoordSys3D,其方向是相对于此系统以用户指定的方式。

orient_new_axis(name, angle, axis[, ...])

轴旋转是指围绕任意轴旋转某个角度。

orient_new_body(name, angle1, angle2, ...[, ...])

身体方向通过三个连续的简单旋转来实现这个坐标系。

orient_new_quaternion(name, q0, q1, q2, q3)

四元数方向使用四元数来确定新的 CoordSys3D 的方向,四元数定义为围绕单位向量 lambda 旋转某个角度 theta 的有限旋转。

orient_new_space(name, angle1, angle2, ...)

空间旋转类似于身体旋转,但旋转的顺序相反。

position_wrt(other)

返回此坐标系原点相对于另一个点/CoordSys3D的位置向量。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

rotation_matrix(other)

返回方向余弦矩阵(DCM),也称为相对于另一个坐标系的“旋转矩阵”。

scalar_map(other)

返回一个字典,该字典表示此框架的坐标变量(基本标量)在其他框架变量中的表达式。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

基本标量

基向量

复制

could_extract_minus_sign

is_hypergeometric

lame_coefficients

transformation_from_parent

transformation_from_parent_function

transformation_to_parent

__init__(
name,
location=None,
rotation_matrix=None,
parent=None,
vector_names=None,
variable_names=None,
latex_vects=None,
pretty_vects=None,
latex_scalars=None,
pretty_scalars=None,
transformation=None,
)[源代码][源代码]

如果该系统相对于另一个系统在特定方向或位置上定义,则方向/位置参数是必要的。

参数:
名称str

新 CoordSys3D 实例的名称。

转换Lambda, Tuple, str

通过变换方程定义的变换或从预定义的变换中选择。

位置向量

新系统原点相对于父实例的位置向量。

旋转矩阵SymPy ImmutableMatrix

新坐标系相对于父坐标系的旋转矩阵。换句话说,即 new_system.rotation_matrix(parent) 的输出。

父级CoordSys3D

定义方向/位置(或两者)所参考的坐标系。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

create_new(
name,
transformation,
variable_names=None,
vector_names=None,
)[源代码][源代码]

返回一个通过变换与自身连接的 CoordSys3D。

参数:
名称str

新 CoordSys3D 实例的名称。

转换Lambda, Tuple, str

通过变换方程定义的变换或从预定义的变换中选择。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

示例

>>> from sympy.vector import CoordSys3D
>>> a = CoordSys3D('a')
>>> b = a.create_new('b', transformation='spherical')
>>> b.transformation_to_parent()
(b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta))
>>> b.transformation_from_parent()
(sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
locate_new(
name,
position,
vector_names=None,
variable_names=None,
)[源代码][源代码]

返回一个 CoordSys3D,其原点位于相对于此坐标系原点的给定位置。

参数:
名称str

新 CoordSys3D 实例的名称。

位置向量

新系统原点相对于此系统的位矢。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

示例

>>> from sympy.vector import CoordSys3D
>>> A = CoordSys3D('A')
>>> B = A.locate_new('B', 10 * A.i)
>>> B.origin.position_wrt(A.origin)
10*A.i
orient_new(
name,
orienters,
location=None,
vector_names=None,
variable_names=None,
)[源代码][源代码]

创建一个新的 CoordSys3D,其方向是相对于此系统以用户指定的方式。

有关定向过程的更多信息,请参阅定向器类的文档。

参数:
名称str

新 CoordSys3D 实例的名称。

定向器可迭代对象/定向器

一个方向器或方向器的可迭代对象,用于定向新的坐标系统。如果提供了一个方向器,它将被应用以获得新的系统。如果提供了一个可迭代对象,方向器将按照它们在可迭代对象中出现的顺序被应用。

位置Vector(可选)

新坐标系原点相对于此系统原点的位置。如果未指定,则认为原点重合。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

示例

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')

使用 AxisOrienter

>>> from sympy.vector import AxisOrienter
>>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j)
>>> A = N.orient_new('A', (axis_orienter, ))

使用 BodyOrienter

>>> from sympy.vector import BodyOrienter
>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> B = N.orient_new('B', (body_orienter, ))

使用 SpaceOrienter

>>> from sympy.vector import SpaceOrienter
>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
>>> C = N.orient_new('C', (space_orienter, ))

使用 QuaternionOrienter

>>> from sympy.vector import QuaternionOrienter
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> D = N.orient_new('D', (q_orienter, ))
orient_new_axis(
name,
angle,
axis,
location=None,
vector_names=None,
variable_names=None,
)[源代码][源代码]

轴旋转是指绕任意轴旋转一定角度。角度以 SymPy expr 标量形式提供,轴以 Vector 形式提供。

参数:
名称字符串

新坐标系的名称

角度表达式

新系统需要旋转的角度

向量

旋转所围绕的轴

位置Vector(可选)

新坐标系原点相对于此系统原点的位置。如果未指定,则认为原点重合。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

示例

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)
orient_new_body(
name,
angle1,
angle2,
angle3,
rotation_order,
location=None,
vector_names=None,
variable_names=None,
)[源代码][源代码]

身体方向通过三个连续的简单旋转来实现这个坐标系。

固定体旋转包括欧拉角和泰特-布莱恩角,参见 https://en.wikipedia.org/wiki/Euler_angles

参数:
名称字符串

新坐标系的名称

angle1, angle2, angle3表达式

三个连续的角度来旋转坐标系

rotation_order字符串

定义旋转轴顺序的字符串

位置Vector(可选)

新坐标系原点相对于此系统原点的位置。如果未指定,则认为原点重合。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

示例

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')

一个 ‘Body’ 固定旋转由三个角度和三个固定在物体上的旋转轴描述。为了使坐标系 D 相对于 N 定向,每次连续旋转总是围绕固定在 D 上的正交单位向量进行。例如,’123’ 旋转将指定围绕 N.i、然后 D.j、然后 D.k 的旋转。(最初,D.i 与 N.i 相同)因此,

>>> D = N.orient_new_body('D', q1, q2, q3, '123')

与…相同

>>> D = N.orient_new_axis('D', q1, N.i)
>>> D = D.orient_new_axis('D', q2, D.j)
>>> D = D.orient_new_axis('D', q3, D.k)

可接受的旋转顺序长度为3,以XYZ或123表示,并且不能连续两次绕同一轴旋转。

>>> B = N.orient_new_body('B', q1, q2, q3, '123')
>>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
>>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')
orient_new_quaternion(
name,
q0,
q1,
q2,
q3,
location=None,
vector_names=None,
variable_names=None,
)[源代码][源代码]

四元数方向使用四元数来确定新的 CoordSys3D 的方向,四元数定义为围绕单位向量 lambda 旋转某个角度 theta 的有限旋转。

这种方向由四个参数描述:

q0 = cos(theta/2)

q1 = lambda_x sin(theta/2)

q2 = lambda_y sin(theta/2)

q3 = lambda_z sin(theta/2)

四元数不接受旋转顺序。

参数:
名称字符串

新坐标系的名称

q0, q1, q2, q3表达式

通过四元数旋转坐标系

位置Vector(可选)

新坐标系原点相对于此系统原点的位置。如果未指定,则认为原点重合。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

示例

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)
orient_new_space(
name,
angle1,
angle2,
angle3,
rotation_order,
location=None,
vector_names=None,
variable_names=None,
)[源代码][源代码]

空间旋转类似于身体旋转,但旋转的顺序相反。

参数:
名称字符串

新坐标系的名称

angle1, angle2, angle3表达式

三个连续的角度来旋转坐标系

rotation_order字符串

定义旋转轴顺序的字符串

位置Vector(可选)

新坐标系原点相对于此系统原点的位置。如果未指定,则认为原点重合。

vector_names, variable_namesiterable(可选)

每个包含3个字符串的可迭代对象,分别用于新系统的基向量和基标量的自定义名称。用于简单的字符串打印。

参见

CoordSys3D.orient_new_body

通过欧拉角进行定向的方法

示例

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')

为了相对于N定向坐标系D,每个连续旋转总是关于N的正交单位向量进行的。例如,’123’旋转将指定关于N.i、然后N.j、然后N.k的旋转。因此,

>>> D = N.orient_new_space('D', q1, q2, q3, '312')

与…相同

>>> B = N.orient_new_axis('B', q1, N.i)
>>> C = B.orient_new_axis('C', q2, N.j)
>>> D = C.orient_new_axis('D', q3, N.k)
position_wrt(other)[源代码][源代码]

返回此坐标系原点相对于另一个点/CoordSys3D的位置向量。

参数:
其他点/坐标系3D

如果 other 是一个 Point,则返回此系统原点相对于它的位置。如果它是 CoordSyRect 的实例,则返回相对于其原点的位置。

示例

>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N1 = N.locate_new('N1', 10 * N.i)
>>> N.position_wrt(N1)
(-10)*N.i
rotation_matrix(other)[源代码][源代码]

返回方向余弦矩阵(DCM),也称为相对于另一个坐标系的“旋转矩阵”。

如果 v_a 是在系统 ‘A’ 中定义的向量(以矩阵格式表示),而 v_b 是在系统 ‘B’ 中定义的同一向量,那么 v_a = A.rotation_matrix(B) * v_b。

返回一个 SymPy 矩阵。

参数:
其他CoordSys3D

生成DCM的系统。

示例

>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> A = N.orient_new_axis('A', q1, N.i)
>>> N.rotation_matrix(A)
Matrix([
[1,       0,        0],
[0, cos(q1), -sin(q1)],
[0, sin(q1),  cos(q1)]])
scalar_map(other)[源代码][源代码]

返回一个字典,该字典表示此框架的坐标变量(基本标量)在其他框架变量中的表达式。

参数:
其他框架CoordSys3D

映射变量的另一个系统。

示例

>>> from sympy.vector import CoordSys3D
>>> from sympy import Symbol
>>> A = CoordSys3D('A')
>>> q = Symbol('q')
>>> B = A.orient_new_axis('B', q, A.k)
>>> A.scalar_map(B)
{A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
class sympy.vector.vector.Vector(*args)[源代码][源代码]

所有向量类的超类。理想情况下,用户不应实例化此类或其任何子类。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

components

返回此向量的组成部分,以 Python 字典的形式映射 BaseVector 实例到相应的度量数值。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

高效地提取求和的系数。

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回表达式作为元组,相对于以下变换 -

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

cross(other)

返回此向量与另一个向量或Dyadic实例的叉积。

diff(*args, **kwargs)

实现 SymPy 的 diff 例程,用于向量。

doit(**hints)

对 Dyadic 中的每个项调用 .doit()。

dot(other)

返回此向量的点积,可以是与另一个向量、一个二元向量或一个 Del 运算符的点积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

为该数量实现 SymPy 的 evalf 例程。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*args, **kwargs)

实现了 SymPy 的因子例程,针对标量部分

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

magnitude()

返回此向量的大小。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

为该数量实现 SymPy 的 evalf 例程。

normal()

返回表达式为分数形式。

normalize()

返回此向量的规范化版本。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

outer(other)

返回此向量与另一个向量的外积,以 Dyadic 实例的形式返回。

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

projection(other[, scalar])

返回 'other' 在 'self' 上的向量或标量投影。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate()

根据其定义,这个向量在不同坐标系中的组成部分。

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

为该数量实现 SymPy 的简化例程。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

to_matrix(system)

返回此向量相对于指定坐标系的矩阵形式。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**opts)

实现了 SymPy 的 trigsimp 例程,用于此数量。

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

目录

is_hypergeometric

转置

property components

返回此向量的组成部分,以 Python 字典的形式映射 BaseVector 实例到相应的度量数值。

示例

>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.components
{C.i: 3, C.j: 4, C.k: 5}
cross(other)[源代码][源代码]

返回此向量与另一个向量或Dyadic实例的叉积。如果’other’是向量,则叉积是向量。如果’other’是Dyadic,则返回Dyadic实例。

参数:
其他: 向量/并矢

我们正在与之交叉的向量或并矢。

示例

>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> C.i.cross(C.j)
C.k
>>> C.i ^ C.i
0
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v ^ C.i
5*C.j + (-4)*C.k
>>> d = C.i.outer(C.i)
>>> C.j.cross(d)
(-1)*(C.k|C.i)
dot(other)[源代码][源代码]

返回此向量与另一个向量、一个Dyadic或一个Del运算符的点积。如果’other’是一个向量,则返回点积标量(SymPy表达式)。如果’other’是一个Dyadic,则点积作为向量返回。如果’other’是Del的实例,则返回方向导数运算符作为Python函数。如果将此函数应用于标量表达式,则返回标量场对此向量的方向导数。

参数:
其他: 向量/并矢/Del

我们正在点积的向量或并矢,或是一个 Del 算子。

示例

>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> C.i.dot(C.j)
0
>>> C.i & C.i
1
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.dot(C.k)
5
>>> (C.i & delop)(C.x*C.y*C.z)
C.y*C.z
>>> d = C.i.outer(C.i)
>>> C.i.dot(d)
C.i
magnitude()[源代码][源代码]

返回此向量的大小。

normalize()[源代码][源代码]

返回此向量的规范化版本。

outer(other)[源代码][源代码]

返回此向量与另一个向量的外积,以 Dyadic 实例的形式返回。

参数:
其他向量

用于计算外积的向量。

示例

>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N.i.outer(N.j)
(N.i|N.j)
projection(other, scalar=False)[源代码][源代码]

返回 ‘other’ 在 ‘self’ 上的向量或标量投影。

示例

>>> from sympy.vector.coordsysrect import CoordSys3D
>>> C = CoordSys3D('C')
>>> i, j, k = C.base_vectors()
>>> v1 = i + j + k
>>> v2 = 3*i + 4*j
>>> v1.projection(v2)
7/3*C.i + 7/3*C.j + 7/3*C.k
>>> v1.projection(v2, scalar=True)
7/3
separate()[源代码][源代码]

根据其定义,这个向量在不同坐标系中的组成部分。

返回一个字典,将每个 CoordSys3D 映射到相应的构成向量。

示例

>>> from sympy.vector import CoordSys3D
>>> R1 = CoordSys3D('R1')
>>> R2 = CoordSys3D('R2')
>>> v = R1.i + R2.i
>>> v.separate() == {R1: R1.i, R2: R2.i}
True
to_matrix(system)[源代码][源代码]

返回此向量相对于指定坐标系的矩阵形式。

参数:
系统CoordSys3D

要计算矩阵形式的系统

示例

>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> from sympy.abc import a, b, c
>>> v = a*C.i + b*C.j + c*C.k
>>> v.to_matrix(C)
Matrix([
[a],
[b],
[c]])
class sympy.vector.dyadic.Dyadic(*args)[源代码][源代码]

所有二元类别的超类。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

components

返回此并矢的组成部分,形式为一个Python字典,将BaseDyadic实例映射到相应的度量数。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

高效地提取求和的系数。

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回表达式作为元组,相对于以下变换 -

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

cross(other)

返回此 Dyadic 与一个 Vector 之间的叉积,结果为 Vector 实例。

diff(*args, **kwargs)

实现 SymPy 的 diff 例程,用于向量。

doit(**hints)

对 Dyadic 中的每个项调用 .doit()。

dot(other)

返回此 Dyadic 与另一个 Dyadic 或 Vector 的点积(也称为内积)。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

为该数量实现 SymPy 的 evalf 例程。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*args, **kwargs)

实现了 SymPy 的因子例程,针对标量部分

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

为该数量实现 SymPy 的 evalf 例程。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

为该数量实现 SymPy 的简化例程。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

to_matrix(system[, second_system])

返回相对于一个或两个坐标系的并矢的矩阵形式。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**opts)

实现了 SymPy 的 trigsimp 例程,用于此数量。

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

目录

is_hypergeometric

转置

参考文献

[2]

Kane, T., Levinson, D. 动力学理论与应用. 1985 McGraw-Hill

property components

返回此并矢的组成部分,形式为一个Python字典,将BaseDyadic实例映射到相应的度量数。

cross(other)[源代码][源代码]

返回此 Dyadic 与一个 Vector 之间的叉积,结果为 Vector 实例。

参数:
其他向量

我们正在与这个 Dyadic 进行叉乘的向量

示例

>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> d = N.i.outer(N.i)
>>> d.cross(N.j)
(N.i|N.k)
dot(other)[源代码][源代码]

返回此 Dyadic 与另一个 Dyadic 或 Vector 的点积(也称为内积)。如果 ‘other’ 是 Dyadic,则返回一个 Dyadic。否则,返回一个 Vector(除非遇到错误)。

参数:
其他二元/向量

另一个要与之进行内积的二元或向量

示例

>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> D1 = N.i.outer(N.j)
>>> D2 = N.j.outer(N.j)
>>> D1.dot(D2)
(N.i|N.j)
>>> D1.dot(N.j)
N.i
to_matrix(system, second_system=None)[源代码][源代码]

返回相对于一个或两个坐标系的并矢的矩阵形式。

参数:
系统CoordSys3D

矩阵的行和列对应的坐标系。如果提供了第二个系统,则这仅对应于矩阵的行。

second_systemCoordSys3D,可选,默认=None

矩阵的列所对应的坐标系。

示例

>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> v = N.i + 2*N.j
>>> d = v.outer(N.i)
>>> d.to_matrix(N)
Matrix([
[1, 0, 0],
[2, 0, 0],
[0, 0, 0]])
>>> from sympy import Symbol
>>> q = Symbol('q')
>>> P = N.orient_new_axis('P', q, N.k)
>>> d.to_matrix(N, P)
Matrix([
[  cos(q),   -sin(q), 0],
[2*cos(q), -2*sin(q), 0],
[       0,         0, 0]])
class sympy.vector.deloperator.Del[源代码][源代码]

表示向量微分算子,通常在数学表达式中用 ‘nabla’ 符号表示。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero

方法

__call__(scalar_field[, doit])

返回给定标量场的梯度,作为一个 Vector 实例。

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

cross(vect[, doit])

表示此运算符与给定向量之间的叉积 - 等于向量场的旋度。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dot(vect[, doit])

表示此算符与给定向量之间的点积 - 等于向量场的散度。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gradient(scalar_field[, doit])

返回给定标量场的梯度,作为一个 Vector 实例。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

cross(vect, doit=False)[源代码][源代码]

表示此运算符与给定向量之间的叉积 - 等于向量场的旋度。

参数:
矢量向量

要计算其旋度的向量。

执行布尔

如果为 True,则在每个组件上调用 .doit() 后返回结果。否则,返回的表达式包含 Derivative 实例。

示例

>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
>>> delop.cross(v, doit = True)
(-C.x*C.y + C.x*C.z)*C.i + (C.x*C.y - C.y*C.z)*C.j +
    (-C.x*C.z + C.y*C.z)*C.k
>>> (delop ^ C.i).doit()
0
dot(vect, doit=False)[源代码][源代码]

表示此算符与给定向量之间的点积 - 等于向量场的散度。

参数:
矢量向量

要计算其散度的向量。

执行布尔

如果为 True,则在每个组件上调用 .doit() 后返回结果。否则,返回的表达式包含 Derivative 实例。

示例

>>> from sympy.vector import CoordSys3D, Del
>>> delop = Del()
>>> C = CoordSys3D('C')
>>> delop.dot(C.x*C.i)
Derivative(C.x, C.x)
>>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
>>> (delop & v).doit()
C.x*C.y + C.x*C.z + C.y*C.z
gradient(scalar_field, doit=False)[源代码][源代码]

返回给定标量场的梯度,作为一个 Vector 实例。

参数:
标量场SymPy 表达式

要计算梯度的标量场。

执行布尔

如果为 True,则在每个组件上调用 .doit() 后返回结果。否则,返回的表达式包含 Derivative 实例。

示例

>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> delop.gradient(9)
0
>>> delop(C.x*C.y*C.z).doit()
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k
class sympy.vector.parametricregion.ParametricRegion(definition, *bounds)[源代码][源代码]

表示空间中的一个参数化区域。

参数:
定义tuple 用于根据参数定义基本标量。
边界定义参数及其对应的下限和上限的参数或长度为3的元组。
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

定义
尺寸
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
限制
参数

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import cos, sin, pi
>>> from sympy.abc import r, theta, t, a, b, x, y
>>> from sympy.vector import ParametricRegion
>>> ParametricRegion((t, t**2), (t, -1, 2))
ParametricRegion((t, t**2), (t, -1, 2))
>>> ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
>>> ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
>>> ParametricRegion((a*cos(t), b*sin(t)), t)
ParametricRegion((a*cos(t), b*sin(t)), t)
>>> circle = ParametricRegion((r*cos(theta), r*sin(theta)), r, (theta, 0, pi))
>>> circle.parameters
(r, theta)
>>> circle.definition
(r*cos(theta), r*sin(theta))
>>> circle.limits
{theta: (0, pi)}

参数区域的维度决定了该区域是曲线、曲面还是体积区域。它不代表其在空间中的维度。

>>> circle.dimensions
1
class sympy.vector.implicitregion.ImplicitRegion(variables, equation)[源代码][源代码]

表示空间中的一个隐式区域。

参数:
变量tuple 将隐式方程中的变量映射到基本标量。
方程表示区域隐式方程的表达式或 Eq。
属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

方程
expr_free_symbols
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
变量

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

multiplicity(point)

返回区域上奇点的重数。

rational_parametrization([parameters, reg_point])

返回隐式区域的合理参数化。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

regular_point()

返回隐式区域上的一个点。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

singular_points()

返回区域的一组奇异点。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import Eq
>>> from sympy.abc import x, y, z, t
>>> from sympy.vector import ImplicitRegion
>>> ImplicitRegion((x, y), x**2 + y**2 - 4)
ImplicitRegion((x, y), x**2 + y**2 - 4)
>>> ImplicitRegion((x, y), Eq(y*x, 1))
ImplicitRegion((x, y), x*y - 1)
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.degree
2
>>> parabola.equation
-4*x + y**2
>>> parabola.rational_parametrization(t)
(4/t**2, 4/t)
>>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2))
>>> r.variables
(x, y, z)
>>> r.singular_points()
EmptySet
>>> r.regular_point()
(-10, -10, 200)
multiplicity(point)[源代码][源代码]

返回区域上奇点的重数。

区域的一个奇点 (x,y) 被称为具有重数 m,如果所有阶数为 m - 1 的偏导数在该点处消失。

示例

>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4)
>>> I.singular_points()
{(0, 0, 0)}
>>> I.multiplicity((0, 0, 0))
2
rational_parametrization(
parameters=('t', 's'),
reg_point=None,
)[源代码][源代码]

返回隐式区域的合理参数化。

参考文献

示例

>>> from sympy import Eq
>>> from sympy.abc import x, y, z, s, t
>>> from sympy.vector import ImplicitRegion
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.rational_parametrization()
(4/t**2, 4/t)
>>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4))
>>> circle.rational_parametrization()
(4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2)
>>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> I.rational_parametrization()
(t**2 - 1, t*(t**2 - 1))
>>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> cubic_curve.rational_parametrization(parameters=(t))
(t**2 - 1, t*(t**2 - 1))
>>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4)
>>> sphere.rational_parametrization(parameters=(t, s))
(-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1))

对于某些圆锥曲线,regular_points() 无法找到曲线上的点。要在这种情况下计算参数表示,用户需要确定区域上的一个点,并使用 reg_point 传递它。

>>> c = ImplicitRegion((x, y), (x  - 1/2)**2 + (y)**2 - (1/4)**2)
>>> c.rational_parametrization(reg_point=(3/4, 0))
(0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1))
regular_point()[源代码][源代码]

返回隐式区域上的一个点。

参考文献

示例

>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16)
>>> circle.regular_point()
(-2, -1)
>>> parabola = ImplicitRegion((x, y), x**2 - 4*y)
>>> parabola.regular_point()
(0, 0)
>>> r = ImplicitRegion((x, y, z), (x + y + z)**4)
>>> r.regular_point()
(-10, -10, 20)
singular_points()[源代码][源代码]

返回区域的一组奇异点。

奇点是区域上所有偏导数都消失的那些点。

示例

>>> from sympy.abc import x, y
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x)
>>> I.singular_points()
{(1, 1)}
class sympy.vector.integrals.ParametricIntegral(field, parametricregion)[源代码][源代码]

表示标量或矢量场在参数区域上的积分

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols
字段
free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

is_algebraic
is_antihermitian
is_commutative
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
参数区域

方法

as_content_primitive([radical, clear])

一个存根,允许在计算表达式的内容和基本组件时跳过基本参数(如元组)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

atoms(*types)

返回构成当前对象的原子。

class_key()

类的好顺序。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

用于返回操作计数的 count_ops 的包装器。

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

find(query[, group])

查找所有匹配查询的子表达式。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

返回一个排序键。

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

xreplace(rule)

替换表达式中对象的出现。

复制

could_extract_minus_sign

is_hypergeometric

示例

>>> from sympy import cos, sin, pi
>>> from sympy.vector import CoordSys3D, ParametricRegion, ParametricIntegral
>>> from sympy.abc import r, t, theta, phi
>>> C = CoordSys3D('C')
>>> curve = ParametricRegion((3*t - 2, t + 1), (t, 1, 2))
>>> ParametricIntegral(C.x, curve)
5*sqrt(10)/2
>>> length = ParametricIntegral(1, curve)
>>> length
sqrt(10)
>>> semisphere = ParametricRegion((2*sin(phi)*cos(theta), 2*sin(phi)*sin(theta), 2*cos(phi)),                            (theta, 0, 2*pi), (phi, 0, pi/2))
>>> ParametricIntegral(C.z, semisphere)
8*pi
>>> ParametricIntegral(C.j + C.k, ParametricRegion((r*cos(theta), r*sin(theta)), r, theta))
0