特殊¶
Gamma、Beta 及相关函数¶
- class sympy.functions.special.gamma_functions.gamma(arg)[源代码][源代码]¶
伽玛函数
\[\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t.\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(arg)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
lowergamma
下不完全伽马函数。
uppergamma
上不完全伽马函数。
polygamma
多伽玛函数。
loggamma
对数伽玛函数。
digamma
Digamma 函数。
trigamma
Trigamma 函数。
sympy.functions.special.beta_functions.beta
欧拉Beta函数。
参考文献
[1]https://en.wikipedia.org/wiki/Gamma_函数
[3]https://mathworld.wolfram.com/Gamma函数.html
示例
>>> from sympy import S, I, pi, gamma >>> from sympy.abc import x
已知有几个特殊值:
>>> gamma(1) 1 >>> gamma(4) 6 >>> gamma(S(3)/2) sqrt(pi)/2
gamma
函数遵循镜像对称性:>>> from sympy import conjugate >>> conjugate(gamma(x)) gamma(conjugate(x))
对 \(x\) 的微分是支持的:
>>> from sympy import diff >>> diff(gamma(x), x) gamma(x)*polygamma(0, x)
也支持级数展开:
>>> from sympy import series >>> series(gamma(x), x, 0, 3) 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 - zeta(3)/3 - EulerGamma**3/6) + O(x**3)
我们可以在整个复平面上以任意精度数值计算
gamma
函数:>>> gamma(pi).evalf(40) 2.288037795340032417959588909060233922890 >>> gamma(1+I).evalf(20) 0.49801566811835604271 - 0.15494982830181068512*I
- class sympy.functions.special.gamma_functions.loggamma(z)[源代码][源代码]¶
loggamma
函数实现了伽马函数的对数(即,\(\log\Gamma(x)\))。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gamma
Gamma 函数。
lowergamma
下不完全伽马函数。
uppergamma
上不完全伽马函数。
polygamma
多伽玛函数。
digamma
Digamma 函数。
trigamma
Trigamma 函数。
sympy.functions.special.beta_functions.beta
欧拉Beta函数。
参考文献
[1]https://en.wikipedia.org/wiki/Gamma_函数
[3]https://mathworld.wolfram.com/对数伽玛函数.html
示例
已知有几个特殊值。对于数值积分参数,我们有:
>>> from sympy import loggamma >>> loggamma(-2) oo >>> loggamma(0) oo >>> loggamma(1) 0 >>> loggamma(2) 0 >>> loggamma(3) log(2)
而对于符号值:
>>> from sympy import Symbol >>> n = Symbol("n", integer=True, positive=True) >>> loggamma(n) log(gamma(n)) >>> loggamma(-n) oo
对于半整数值:
>>> from sympy import S >>> loggamma(S(5)/2) log(3*sqrt(pi)/4) >>> loggamma(n/2) log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
以及一般的理性论点:
>>> from sympy import expand_func >>> L = loggamma(S(16)/3) >>> expand_func(L).doit() -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13) >>> L = loggamma(S(19)/4) >>> expand_func(L).doit() -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15) >>> L = loggamma(S(23)/7) >>> expand_func(L).doit() -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
loggamma
函数在趋向无穷大时有以下极限:>>> from sympy import oo >>> loggamma(oo) oo >>> loggamma(-oo) zoo
loggamma
函数在 \(x \in \mathbb{C} \setminus \{-\infty, 0\}\) 时满足镜像对称性:>>> from sympy.abc import x >>> from sympy import conjugate >>> conjugate(loggamma(x)) loggamma(conjugate(x))
对 \(x\) 的微分是支持的:
>>> from sympy import diff >>> diff(loggamma(x), x) polygamma(0, x)
也支持级数展开:
>>> from sympy import series >>> series(loggamma(x), x, 0, 4).cancel() -log(x) - EulerGamma*x + pi**2*x**2/12 - x**3*zeta(3)/3 + O(x**4)
我们可以在整个复平面上以任意精度数值评估
loggamma
函数:>>> from sympy import I >>> loggamma(5).evalf(30) 3.17805383034794561964694160130 >>> loggamma(I).evalf(20) -0.65092319930185633889 - 1.8724366472624298171*I
- class sympy.functions.special.gamma_functions.polygamma(n, z)[源代码][源代码]¶
函数
polygamma(n, z)
返回log(gamma(z)).diff(n + 1)
。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gamma
Gamma 函数。
lowergamma
下不完全伽马函数。
uppergamma
上不完全伽马函数。
loggamma
对数伽玛函数。
digamma
Digamma 函数。
trigamma
Trigamma 函数。
sympy.functions.special.beta_functions.beta
欧拉Beta函数。
参考文献
[5]O. Espinosa and V. Moll, “A generalized polygamma function”, Integral Transforms and Special Functions (2004), 101-115.
示例
已知有几个特殊值:
>>> from sympy import S, polygamma >>> polygamma(0, 1) -EulerGamma >>> polygamma(0, 1/S(2)) -2*log(2) - EulerGamma >>> polygamma(0, 1/S(3)) -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3)) >>> polygamma(0, 1/S(4)) -pi/2 - log(4) - log(2) - EulerGamma >>> polygamma(0, 2) 1 - EulerGamma >>> polygamma(0, 23) 19093197/5173168 - EulerGamma
>>> from sympy import oo, I >>> polygamma(0, oo) oo >>> polygamma(0, -oo) oo >>> polygamma(0, I*oo) oo >>> polygamma(0, -I*oo) oo
对 \(x\) 的微分是支持的:
>>> from sympy import Symbol, diff >>> x = Symbol("x") >>> diff(polygamma(0, x), x) polygamma(1, x) >>> diff(polygamma(0, x), x, 2) polygamma(2, x) >>> diff(polygamma(0, x), x, 3) polygamma(3, x) >>> diff(polygamma(1, x), x) polygamma(2, x) >>> diff(polygamma(1, x), x, 2) polygamma(3, x) >>> diff(polygamma(2, x), x) polygamma(3, x) >>> diff(polygamma(2, x), x, 2) polygamma(4, x)
>>> n = Symbol("n") >>> diff(polygamma(n, x), x) polygamma(n + 1, x) >>> diff(polygamma(n, x), x, 2) polygamma(n + 2, x)
我们可以用谐波数来重写
polygamma
函数:>>> from sympy import harmonic >>> polygamma(0, x).rewrite(harmonic) harmonic(x - 1) - EulerGamma >>> polygamma(2, x).rewrite(harmonic) 2*harmonic(x - 1, 3) - 2*zeta(3) >>> ni = Symbol("n", integer=True) >>> polygamma(ni, x).rewrite(harmonic) (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
- class sympy.functions.special.gamma_functions.digamma(z)[源代码][源代码]¶
digamma
函数是loggamma
函数的一阶导数\[\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z) }.\]在这种情况下,
digamma(z) = polygamma(0, z)
。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gamma
Gamma 函数。
lowergamma
下不完全伽马函数。
uppergamma
上不完全伽马函数。
polygamma
多伽玛函数。
loggamma
对数伽玛函数。
trigamma
Trigamma 函数。
sympy.functions.special.beta_functions.beta
欧拉Beta函数。
参考文献
[1]https://en.wikipedia.org/wiki/Digamma_函数
示例
>>> from sympy import digamma >>> digamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> digamma(z) polygamma(0, z)
保留
digamma
的原样:>>> digamma(0, evaluate=False) digamma(0) >>> digamma(z, evaluate=False) digamma(z)
- class sympy.functions.special.gamma_functions.trigamma(z)[源代码][源代码]¶
trigamma
函数是loggamma
函数的二阶导数\[\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).\]在这种情况下,
trigamma(z) = polygamma(1, z)
。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gamma
Gamma 函数。
lowergamma
下不完全伽马函数。
uppergamma
上不完全伽马函数。
polygamma
多伽玛函数。
loggamma
对数伽玛函数。
digamma
Digamma 函数。
sympy.functions.special.beta_functions.beta
欧拉Beta函数。
参考文献
示例
>>> from sympy import trigamma >>> trigamma(0) zoo >>> from sympy import Symbol >>> z = Symbol('z') >>> trigamma(z) polygamma(1, z)
保留
trigamma
的原样:>>> trigamma(0, evaluate=False) trigamma(0) >>> trigamma(z, evaluate=False) trigamma(z)
- class sympy.functions.special.gamma_functions.uppergamma(a, z)[源代码][源代码]¶
上不完全伽玛函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(a, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gamma
Gamma 函数。
lowergamma
下不完全伽马函数。
polygamma
多伽玛函数。
loggamma
对数伽玛函数。
digamma
Digamma 函数。
trigamma
Trigamma 函数。
sympy.functions.special.beta_functions.beta
欧拉Beta函数。
参考文献
[2]Abramowitz, Milton; Stegun, Irene A., 编. (1965), 第六章, 第五节, 数学函数手册与公式、图表及数学表格
示例
>>> from sympy import uppergamma, S >>> from sympy.abc import s, x >>> uppergamma(s, x) uppergamma(s, x) >>> uppergamma(3, x) 2*(x**2/2 + x + 1)*exp(-x) >>> uppergamma(-S(1)/2, x) -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x) >>> uppergamma(-2, x) expint(3, x)/x**2
- class sympy.functions.special.gamma_functions.lowergamma(a, x)[源代码][源代码]¶
下不完全伽玛函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(a, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gamma
Gamma 函数。
uppergamma
上不完全伽马函数。
polygamma
多伽玛函数。
loggamma
对数伽玛函数。
digamma
Digamma 函数。
trigamma
Trigamma 函数。
sympy.functions.special.beta_functions.beta
欧拉Beta函数。
参考文献
[2]Abramowitz, Milton; Stegun, Irene A., 编. (1965), 第六章, 第五节, 数学函数手册与公式、图表及数学表格
示例
>>> from sympy import lowergamma, S >>> from sympy.abc import s, x >>> lowergamma(s, x) lowergamma(s, x) >>> lowergamma(3, x) -2*(x**2/2 + x + 1)*exp(-x) + 2 >>> lowergamma(-S(1)/2, x) -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
- class sympy.functions.special.gamma_functions.multigamma(x, p)[源代码][源代码]¶
多变量伽玛函数是伽玛函数的推广
\[\Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2].\]在特殊情况下,
multigamma(x, 1) = gamma(x)
。- 参数:
- p多元伽玛函数的阶或维数
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(x, p)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
示例
>>> from sympy import S, multigamma >>> from sympy import Symbol >>> x = Symbol('x') >>> p = Symbol('p', positive=True, integer=True)
>>> multigamma(x, p) pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p))
已知有几个特殊值:
>>> multigamma(1, 1) 1 >>> multigamma(4, 1) 6 >>> multigamma(S(3)/2, 1) sqrt(pi)/2
用
gamma
函数表示multigamma
:>>> multigamma(x, 1) gamma(x)
>>> multigamma(x, 2) sqrt(pi)*gamma(x)*gamma(x - 1/2)
>>> multigamma(x, 3) pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2)
- class sympy.functions.special.beta_functions.beta(x, y=None)[源代码][源代码]¶
贝塔积分被称为勒让德的第一类欧拉积分:
\[\mathrm{B}(x,y) \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t.\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(x[, y])evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
(argindex)find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gamma
Gamma 函数。
uppergamma
上不完全伽马函数。
lowergamma
下不完全伽马函数。
polygamma
多伽玛函数。
loggamma
对数伽玛函数。
digamma
Digamma 函数。
trigamma
Trigamma 函数。
参考文献
[1][2]https://mathworld.wolfram.com/Beta函数.html
示例
>>> from sympy import I, pi >>> from sympy.abc import x, y
Beta 函数遵循镜像对称性:
>>> from sympy import beta, conjugate >>> conjugate(beta(x, y)) beta(conjugate(x), conjugate(y))
对 \(x\) 和 \(y\) 的微分都支持:
>>> from sympy import beta, diff >>> diff(beta(x, y), x) (polygamma(0, x) - polygamma(0, x + y))*beta(x, y)
>>> diff(beta(x, y), y) (polygamma(0, y) - polygamma(0, x + y))*beta(x, y)
>>> diff(beta(x), x) 2*(polygamma(0, x) - polygamma(0, 2*x))*beta(x, x)
我们可以对Beta函数进行数值评估,以任意精度计算任意复数x和y:
>>> from sympy import beta >>> beta(pi).evalf(40) 0.02671848900111377452242355235388489324562
>>> beta(1 + I).evalf(20) -0.2112723729365330143 - 0.7655283165378005676*I
错误函数和菲涅尔积分¶
- class sympy.functions.special.error_functions.erf(arg)[源代码][源代码]¶
高斯误差函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(arg)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
inverse
([argindex])返回此函数的逆函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]示例
>>> from sympy import I, oo, erf >>> from sympy.abc import z
已知有几个特殊值:
>>> erf(0) 0 >>> erf(oo) 1 >>> erf(-oo) -1 >>> erf(I*oo) oo*I >>> erf(-I*oo) -oo*I
通常可以从参数中提取出 -1 和 \(I\) 的因子:
>>> erf(-z) -erf(z)
误差函数遵循镜像对称性:
>>> from sympy import conjugate >>> conjugate(erf(z)) erf(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(erf(z), z) 2*exp(-z**2)/sqrt(pi)
我们可以在整个复平面上以任意精度数值评估误差函数:
>>> erf(4).evalf(30) 0.999999984582742099719981147840
>>> erf(-4*I).evalf(30) -1296959.73071763923152794095062*I
- class sympy.functions.special.error_functions.erfc(arg)[源代码][源代码]¶
互补误差函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(arg)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
inverse
([argindex])返回此函数的逆函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]示例
>>> from sympy import I, oo, erfc >>> from sympy.abc import z
已知有几个特殊值:
>>> erfc(0) 1 >>> erfc(oo) 0 >>> erfc(-oo) 2 >>> erfc(I*oo) -oo*I >>> erfc(-I*oo) oo*I
误差函数遵循镜像对称性:
>>> from sympy import conjugate >>> conjugate(erfc(z)) erfc(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(erfc(z), z) -2*exp(-z**2)/sqrt(pi)
它也遵循
>>> erfc(-z) 2 - erfc(z)
我们可以在整个复平面上以任意精度数值评估互补误差函数:
>>> erfc(4).evalf(30) 0.0000000154172579002800188521596734869
>>> erfc(4*I).evalf(30) 1.0 - 1296959.73071763923152794095062*I
- class sympy.functions.special.error_functions.erfi(z)[源代码][源代码]¶
虚构的错误函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]示例
>>> from sympy import I, oo, erfi >>> from sympy.abc import z
已知有几个特殊值:
>>> erfi(0) 0 >>> erfi(oo) oo >>> erfi(-oo) -oo >>> erfi(I*oo) I >>> erfi(-I*oo) -I
通常可以从参数中提取出 -1 和 \(I\) 的因子:
>>> erfi(-z) -erfi(z)
>>> from sympy import conjugate >>> conjugate(erfi(z)) erfi(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(erfi(z), z) 2*exp(z**2)/sqrt(pi)
我们可以在整个复平面上以任意精度数值评估虚误差函数:
>>> erfi(2).evalf(30) 18.5648024145755525987042919132
>>> erfi(-2*I).evalf(30) -0.995322265018952734162069256367*I
- class sympy.functions.special.error_functions.erf2(x, y)[源代码][源代码]¶
双参数误差函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(x, y)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
(argindex)find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import oo, erf2 >>> from sympy.abc import x, y
已知有几个特殊值:
>>> erf2(0, 0) 0 >>> erf2(x, x) 0 >>> erf2(x, oo) 1 - erf(x) >>> erf2(x, -oo) -erf(x) - 1 >>> erf2(oo, y) erf(y) - 1 >>> erf2(-oo, y) erf(y) + 1
一般来说,可以提取出 -1 的因子:
>>> erf2(-x, -y) -erf2(x, y)
误差函数遵循镜像对称性:
>>> from sympy import conjugate >>> conjugate(erf2(x, y)) erf2(conjugate(x), conjugate(y))
对 \(x\)、\(y\) 的微分是被支持的:
>>> from sympy import diff >>> diff(erf2(x, y), x) -2*exp(-x**2)/sqrt(pi) >>> diff(erf2(x, y), y) 2*exp(-y**2)/sqrt(pi)
- class sympy.functions.special.error_functions.erfinv(z)[源代码][源代码]¶
逆误差函数。erfinv 函数定义为:
\[\mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
inverse
([argindex])返回此函数的逆函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import erfinv >>> from sympy.abc import x
已知有几个特殊值:
>>> erfinv(0) 0 >>> erfinv(1) oo
对 \(x\) 的微分是支持的:
>>> from sympy import diff >>> diff(erfinv(x), x) sqrt(pi)*exp(erfinv(x)**2)/2
我们可以在 [-1, 1] 范围内以任意精度数值评估反误差函数:
>>> erfinv(0.2).evalf(30) 0.179143454621291692285822705344
- class sympy.functions.special.error_functions.erfcinv(z)[源代码][源代码]¶
互补误差函数的反函数。erfcinv 函数定义为:
\[\mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
inverse
([argindex])返回此函数的逆函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import erfcinv >>> from sympy.abc import x
已知有几个特殊值:
>>> erfcinv(1) 0 >>> erfcinv(0) oo
对 \(x\) 的微分是支持的:
>>> from sympy import diff >>> diff(erfcinv(x), x) -sqrt(pi)*exp(erfcinv(x)**2)/2
- class sympy.functions.special.error_functions.erf2inv(x, y)[源代码][源代码]¶
双参数反误差函数。erf2inv 函数定义为:
\[\mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(x, y)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
(argindex)find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import erf2inv, oo >>> from sympy.abc import x, y
已知有几个特殊值:
>>> erf2inv(0, 0) 0 >>> erf2inv(1, 0) 1 >>> erf2inv(0, 1) oo >>> erf2inv(0, y) erfinv(y) >>> erf2inv(oo, y) erfcinv(-y)
支持对 \(x\) 和 \(y\) 的微分:
>>> from sympy import diff >>> diff(erf2inv(x, y), x) exp(-x**2 + erf2inv(x, y)**2) >>> diff(erf2inv(x, y), y) sqrt(pi)*exp(erf2inv(x, y)**2)/2
- class sympy.functions.special.error_functions.FresnelIntegral(z)[源代码][源代码]¶
Fresnel 积分的基类。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
- class sympy.functions.special.error_functions.fresnels(z)[源代码][源代码]¶
菲涅尔积分 S。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
fresnelc
菲涅尔余弦积分。
参考文献
[1][5]John W. Wrench Jr. 和 Vicki Alley 对菲涅尔积分的收敛因素
示例
>>> from sympy import I, oo, fresnels >>> from sympy.abc import z
已知有几个特殊值:
>>> fresnels(0) 0 >>> fresnels(oo) 1/2 >>> fresnels(-oo) -1/2 >>> fresnels(I*oo) -I/2 >>> fresnels(-I*oo) I/2
通常可以从参数中提取出 -1 和 \(i\) 的因子:
>>> fresnels(-z) -fresnels(z) >>> fresnels(I*z) -I*fresnels(z)
Fresnel S 积分遵循镜像对称性 \(\overline{S(z)} = S(\bar{z})\):
>>> from sympy import conjugate >>> conjugate(fresnels(z)) fresnels(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(fresnels(z), z) sin(pi*z**2/2)
通过积分定义菲涅尔函数:
>>> from sympy import integrate, pi, sin, expand_func >>> integrate(sin(pi*z**2/2), z) 3*fresnels(z)*gamma(3/4)/(4*gamma(7/4)) >>> expand_func(integrate(sin(pi*z**2/2), z)) fresnels(z)
我们可以在整个复平面上以任意精度数值计算菲涅尔积分:
>>> fresnels(2).evalf(30) 0.343415678363698242195300815958
>>> fresnels(-2*I).evalf(30) 0.343415678363698242195300815958*I
- class sympy.functions.special.error_functions.fresnelc(z)[源代码][源代码]¶
菲涅尔积分 C。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
fresnels
菲涅尔正弦积分。
参考文献
[1][5]John W. Wrench Jr. 和 Vicki Alley 对菲涅尔积分的收敛因素
示例
>>> from sympy import I, oo, fresnelc >>> from sympy.abc import z
已知有几个特殊值:
>>> fresnelc(0) 0 >>> fresnelc(oo) 1/2 >>> fresnelc(-oo) -1/2 >>> fresnelc(I*oo) I/2 >>> fresnelc(-I*oo) -I/2
通常可以从参数中提取出 -1 和 \(i\) 的因子:
>>> fresnelc(-z) -fresnelc(z) >>> fresnelc(I*z) I*fresnelc(z)
Fresnel C 积分遵循镜像对称性 \(\overline{C(z)} = C(\bar{z})\):
>>> from sympy import conjugate >>> conjugate(fresnelc(z)) fresnelc(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(fresnelc(z), z) cos(pi*z**2/2)
通过积分定义菲涅尔函数:
>>> from sympy import integrate, pi, cos, expand_func >>> integrate(cos(pi*z**2/2), z) fresnelc(z)*gamma(1/4)/(4*gamma(5/4)) >>> expand_func(integrate(cos(pi*z**2/2), z)) fresnelc(z)
我们可以在整个复平面上以任意精度数值计算菲涅尔积分:
>>> fresnelc(2).evalf(30) 0.488253406075340754500223503357
>>> fresnelc(-2*I).evalf(30) -0.488253406075340754500223503357*I
指数、对数和三角积分¶
- class sympy.functions.special.error_functions.Ei(z)[源代码][源代码]¶
经典的指数积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
[2][3]Abramowitz & Stegun, 第5节: https://web.archive.org/web/20201128173312/http://people.math.sfu.ca/~cbm/aands/page_228.htm
示例
>>> from sympy import Ei, polar_lift, exp_polar, I, pi >>> from sympy.abc import x
>>> Ei(-1) Ei(-1)
这产生一个实际值:
>>> Ei(-1).n(chop=True) -0.219383934395520
另一方面,解析延拓不是实数:
>>> Ei(polar_lift(-1)).n(chop=True) -0.21938393439552 + 3.14159265358979*I
指数积分在原点处有一个对数分支点:
>>> Ei(x*exp_polar(2*I*pi)) Ei(x) + 2*I*pi
支持微分:
>>> Ei(x).diff(x) exp(x)/x
指数积分与许多其他特殊函数有关。例如:
>>> from sympy import expint, Shi >>> Ei(x).rewrite(expint) -expint(1, x*exp_polar(I*pi)) - I*pi >>> Ei(x).rewrite(Shi) Chi(x) + Shi(x)
- class sympy.functions.special.error_functions.expint(nu, z)[源代码][源代码]¶
广义指数积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
(argindex)find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
[3]示例
>>> from sympy import expint, S >>> from sympy.abc import nu, z
支持微分。关于 \(z\) 的微分进一步解释了名称:对于整数阶,指数积分是指数函数的迭代积分。
>>> expint(nu, z).diff(z) -expint(nu - 1, z)
对 \(\nu\) 的微分没有经典表达式:
>>> expint(nu, z).diff(nu) -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)
在非正整数阶次下,指数积分简化为指数函数:
>>> expint(0, z) exp(-z)/z >>> expint(-1, z) exp(-z)/z + exp(-z)/z**2
在半整数处,它简化为误差函数:
>>> expint(S(1)/2, z) sqrt(pi)*erfc(sqrt(z))/sqrt(z)
在正整数阶时,它可以重写为指数函数和
expint(1, z)
的形式。使用expand_func()
来实现这一点:>>> from sympy import expand_func >>> expand_func(expint(5, z)) z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
广义指数积分本质上等价于不完全伽玛函数:
>>> from sympy import uppergamma >>> expint(nu, z).rewrite(uppergamma) z**(nu - 1)*uppergamma(1 - nu, z)
因此,它在原点处分叉:
>>> from sympy import exp_polar, pi, I >>> expint(4, z*exp_polar(2*pi*I)) I*pi*z**3/3 + expint(4, z) >>> expint(nu, z*exp_polar(2*pi*I)) z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)
- sympy.functions.special.error_functions.E1(z)[源代码][源代码]¶
广义指数积分的经典案例。
示例
>>> from sympy import E1 >>> E1(0) expint(1, 0)
>>> E1(5) expint(1, 5)
- class sympy.functions.special.error_functions.li(z)[源代码][源代码]¶
经典的对数积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1][2]https://mathworld.wolfram.com/对数积分.html
示例
>>> from sympy import I, oo, li >>> from sympy.abc import z
已知有几个特殊值:
>>> li(0) 0 >>> li(1) -oo >>> li(oo) oo
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(li(z), z) 1/log(z)
通过积分定义
li
函数: >>> from sympy import integrate >>> integrate(li(z)) z*li(z) - Ei(2*log(z))>>> integrate(li(z),z) z*li(z) - Ei(2*log(z))
对数积分也可以根据
Ei
来定义:>>> from sympy import Ei >>> li(z).rewrite(Ei) Ei(log(z)) >>> diff(li(z).rewrite(Ei), z) 1/log(z)
我们可以在整个复平面上(除了奇异点)以任意精度数值计算对数积分:
>>> li(2).evalf(30) 1.04516378011749278484458888919
>>> li(2*I).evalf(30) 1.0652795784357498247001125598 + 3.08346052231061726610939702133*I
我们甚至可以通过 mpmath 的帮助来计算 Soldner 常数:
>>> from mpmath import findroot >>> findroot(li, 2) 1.45136923488338
进一步的变换包括根据三角积分
Si
、Ci
、Shi
和Chi
重写li
:>>> from sympy import Si, Ci, Shi, Chi >>> li(z).rewrite(Si) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Ci) -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)) >>> li(z).rewrite(Shi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z)) >>> li(z).rewrite(Chi) -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
- class sympy.functions.special.error_functions.Li(z)[源代码][源代码]¶
偏移对数积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1][2]https://mathworld.wolfram.com/对数积分.html
示例
>>> from sympy import Li >>> from sympy.abc import z
以下特殊值是已知的:
>>> Li(2) 0
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(Li(z), z) 1/log(z)
移位的对数积分可以写成 \(li(z)\) 的形式:
>>> from sympy import li >>> Li(z).rewrite(li) li(z) - li(2)
我们可以在整个复平面上(除了奇异点)以任意精度数值计算对数积分:
>>> Li(2).evalf(30) 0
>>> Li(4).evalf(30) 1.92242131492155809316615998938
- class sympy.functions.special.error_functions.Si(z)[源代码][源代码]¶
正弦积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
[1]示例
>>> from sympy import Si >>> from sympy.abc import z
正弦积分是 \(sin(z)/z\) 的不定积分:
>>> Si(z).diff(z) sin(z)/z
它是无分支的:
>>> from sympy import exp_polar, I, pi >>> Si(z*exp_polar(2*I*pi)) Si(z)
正弦积分在乘以
I
时表现得非常类似于普通正弦:>>> Si(I*z) I*Shi(z) >>> Si(-z) -Si(z)
它也可以用指数积分来表示,但要注意后者是有分支的:
>>> from sympy import expint >>> Si(z).rewrite(expint) -I*(-expint(1, z*exp_polar(-I*pi/2))/2 + expint(1, z*exp_polar(I*pi/2))/2) + pi/2
它可以被重写为 sinc 函数的形式(根据定义):
>>> from sympy import sinc >>> Si(z).rewrite(sinc) Integral(sinc(_t), (_t, 0, z))
- class sympy.functions.special.error_functions.Ci(z)[源代码][源代码]¶
余弦积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]示例
>>> from sympy import Ci >>> from sympy.abc import z
余弦积分是 \(\cos(z)/z\) 的一个原函数:
>>> Ci(z).diff(z) cos(z)/z
它在原点有一个对数分支点:
>>> from sympy import exp_polar, I, pi >>> Ci(z*exp_polar(2*I*pi)) Ci(z) + 2*I*pi
余弦积分在乘以\(i\)时表现得有些像普通的\(\cos\):
>>> from sympy import polar_lift >>> Ci(polar_lift(I)*z) Chi(z) + I*pi/2 >>> Ci(polar_lift(-1)*z) Ci(z) + I*pi
它也可以用指数积分来表示:
>>> from sympy import expint >>> Ci(z).rewrite(expint) -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
- class sympy.functions.special.error_functions.Shi(z)[源代码][源代码]¶
Sinh 积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]示例
>>> from sympy import Shi >>> from sympy.abc import z
Sinh 积分是 \(\sinh(z)/z\) 的一个原函数:
>>> Shi(z).diff(z) sinh(z)/z
它是无分支的:
>>> from sympy import exp_polar, I, pi >>> Shi(z*exp_polar(2*I*pi)) Shi(z)
\(\sinh\) 积分在乘以 \(i\) 时表现得非常类似于普通的 \(\sinh\):
>>> Shi(I*z) I*Si(z) >>> Shi(-z) -Shi(z)
它也可以用指数积分来表示,但要注意后者是有分支的:
>>> from sympy import expint >>> Shi(z).rewrite(expint) expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
- class sympy.functions.special.error_functions.Chi(z)[源代码][源代码]¶
双曲余弦积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]示例
>>> from sympy import Chi >>> from sympy.abc import z
\(\cosh\) 积分是 \(\cosh(z)/z\) 的原函数:
>>> Chi(z).diff(z) cosh(z)/z
它在原点有一个对数分支点:
>>> from sympy import exp_polar, I, pi >>> Chi(z*exp_polar(2*I*pi)) Chi(z) + 2*I*pi
\(\cosh\) 积分在乘以 \(i\) 时表现得有些像普通的 \(\cosh\):
>>> from sympy import polar_lift >>> Chi(polar_lift(I)*z) Ci(z) + I*pi/2 >>> Chi(polar_lift(-1)*z) Chi(z) + I*pi
它也可以用指数积分来表示:
>>> from sympy import expint >>> Chi(z).rewrite(expint) -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
贝塞尔类型函数¶
- class sympy.functions.special.bessel.BesselBase(nu, z)[源代码][源代码]¶
贝塞尔型函数的抽象基类。
这个类旨在减少代码重复。所有贝塞尔类型的函数都可以 1) 被微分,其导数可以用类似的函数表示,以及 2) 用其他贝塞尔类型的函数重写。
这里,假设贝塞尔型函数有一个复数参数。
要使用这个基类,定义类属性
_a
和_b
使得2*F_n' = -_a*F_{n+1} + b*F_{n-1}
。- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
- property argument¶
贝塞尔型函数的参数。
- property order¶
贝塞尔型函数的阶数。
- class sympy.functions.special.bessel.besselj(nu, z)[源代码][源代码]¶
第一类贝塞尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]Abramowitz, Milton; Stegun, Irene A., 编. (1965), “第9章”, 数学函数手册与公式、图表和数学表格
[2]Luke, Y. L. (1969), 特殊函数及其近似, 第一卷
[3]示例
创建一个贝塞尔函数对象:
>>> from sympy import besselj, jn >>> from sympy.abc import z, n >>> b = besselj(n, z)
区分它:
>>> b.diff(z) besselj(n - 1, z)/2 - besselj(n + 1, z)/2
用球贝塞尔函数重写:
>>> b.rewrite(jn) sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
访问参数和参数:
>>> b.order n >>> b.argument z
- class sympy.functions.special.bessel.bessely(nu, z)[源代码][源代码]¶
第二类贝塞尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import bessely, yn >>> from sympy.abc import z, n >>> b = bessely(n, z) >>> b.diff(z) bessely(n - 1, z)/2 - bessely(n + 1, z)/2 >>> b.rewrite(yn) sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
- class sympy.functions.special.bessel.besseli(nu, z)[源代码][源代码]¶
第一类修正贝塞尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import besseli >>> from sympy.abc import z, n >>> besseli(n, z).diff(z) besseli(n - 1, z)/2 + besseli(n + 1, z)/2
- class sympy.functions.special.bessel.besselk(nu, z)[源代码][源代码]¶
第二类修正贝塞尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import besselk >>> from sympy.abc import z, n >>> besselk(n, z).diff(z) -besselk(n - 1, z)/2 - besselk(n + 1, z)/2
- class sympy.functions.special.bessel.hankel1(nu, z)[源代码][源代码]¶
第一类汉克尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import hankel1 >>> from sympy.abc import z, n >>> hankel1(n, z).diff(z) hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
- class sympy.functions.special.bessel.hankel2(nu, z)[源代码][源代码]¶
第二类汉克尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import hankel2 >>> from sympy.abc import z, n >>> hankel2(n, z).diff(z) hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
- class sympy.functions.special.bessel.jn(nu, z)[源代码][源代码]¶
第一类球贝塞尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(jn(0, z))) sin(z)/z >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z True >>> expand_func(jn(3, z)) (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z) >>> jn(nu, z).rewrite(besselj) sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2 >>> jn(nu, z).rewrite(bessely) (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2 >>> jn(2, 5.2+0.3j).evalf(20) 0.099419756723640344491 - 0.054525080242173562897*I
- class sympy.functions.special.bessel.yn(nu, z)[源代码][源代码]¶
第二类球贝塞尔函数。
- 属性:
args
返回 ‘self’ 的参数元组。
argument
贝塞尔型函数的参数。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
order
贝塞尔型函数的阶数。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(nu, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(yn(0, z))) -cos(z)/z >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z True >>> yn(nu, z).rewrite(besselj) (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2 >>> yn(nu, z).rewrite(bessely) sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2 >>> yn(2, 5.2+0.3j).evalf(20) 0.18525034196069722536 + 0.014895573969924817587*I
- sympy.functions.special.bessel.jn_zeros(n, k, method='sympy', dps=15)[源代码][源代码]¶
第一类球贝塞尔函数的零点。
- 参数:
- n整数
贝塞尔函数的顺序
- k整数
返回的零的数量
示例
>>> from sympy import jn_zeros >>> jn_zeros(2, 4, dps=5) [5.7635, 9.095, 12.323, 15.515]
- class sympy.functions.special.bessel.marcumq(m, a, b)[源代码][源代码]¶
Marcum Q 函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(m, a, b)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import marcumq >>> from sympy.abc import m, a, b >>> marcumq(m, a, b) marcumq(m, a, b)
特殊值:
>>> marcumq(m, 0, b) uppergamma(m, b**2/2)/gamma(m) >>> marcumq(0, 0, 0) 0 >>> marcumq(0, a, 0) 1 - exp(-a**2/2) >>> marcumq(1, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 >>> marcumq(2, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
对 \(a\) 和 \(b\) 的微分是支持的:
>>> from sympy import diff >>> diff(marcumq(m, a, b), a) a*(-marcumq(m, a, b) + marcumq(m + 1, a, b)) >>> diff(marcumq(m, a, b), b) -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)
Airy 函数¶
- class sympy.functions.special.bessel.AiryBase(*args)[源代码][源代码]¶
Airy 函数抽象基类。
此类旨在减少代码重复。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(*args)返回应用于参数 args 的 cls 的规范形式。
evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
- class sympy.functions.special.bessel.airyai(arg)[源代码][源代码]¶
第一类Airy函数\(\operatorname{Ai}\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(arg)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
airybi
第二类艾里函数。
airyaiprime
第一类艾里函数的导数。
airybiprime
第二类艾里函数的导数。
参考文献
[3]示例
创建一个 Airy 函数对象:
>>> from sympy import airyai >>> from sympy.abc import z
>>> airyai(z) airyai(z)
已知有几个特殊值:
>>> airyai(0) 3**(1/3)/(3*gamma(2/3)) >>> from sympy import oo >>> airyai(oo) 0 >>> airyai(-oo) 0
Airy 函数服从镜像对称性:
>>> from sympy import conjugate >>> conjugate(airyai(z)) airyai(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(airyai(z), z) airyaiprime(z) >>> diff(airyai(z), z, 2) z*airyai(z)
也支持级数展开:
>>> from sympy import series >>> series(airyai(z), z, 0, 3) 3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
我们可以在整个复平面上以任意精度数值评估Airy函数:
>>> airyai(-2).evalf(50) 0.22740742820168557599192443603787379946077222541710
将 \(\operatorname{Ai}(z)\) 用超几何函数表示:
>>> from sympy import hyper >>> airyai(z).rewrite(hyper) -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
- class sympy.functions.special.bessel.airybi(arg)[源代码][源代码]¶
第二类Airy函数\(\operatorname{Bi}\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(arg)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
airyai
第一类艾里函数。
airyaiprime
第一类艾里函数的导数。
airybiprime
第二类艾里函数的导数。
参考文献
[3]示例
创建一个 Airy 函数对象:
>>> from sympy import airybi >>> from sympy.abc import z
>>> airybi(z) airybi(z)
已知有几个特殊值:
>>> airybi(0) 3**(5/6)/(3*gamma(2/3)) >>> from sympy import oo >>> airybi(oo) oo >>> airybi(-oo) 0
Airy 函数服从镜像对称性:
>>> from sympy import conjugate >>> conjugate(airybi(z)) airybi(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(airybi(z), z) airybiprime(z) >>> diff(airybi(z), z, 2) z*airybi(z)
也支持级数展开:
>>> from sympy import series >>> series(airybi(z), z, 0, 3) 3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
我们可以在整个复平面上以任意精度数值评估Airy函数:
>>> airybi(-2).evalf(50) -0.41230258795639848808323405461146104203453483447240
将 \(\operatorname{Bi}(z)\) 用超几何函数表示:
>>> from sympy import hyper >>> airybi(z).rewrite(hyper) 3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
- class sympy.functions.special.bessel.airyaiprime(arg)[源代码][源代码]¶
第一类艾里函数的导数 \(\operatorname{Ai}^\prime\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(arg)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
airyai
第一类艾里函数。
airybi
第二类艾里函数。
airybiprime
第二类艾里函数的导数。
参考文献
[3]示例
创建一个 Airy 函数对象:
>>> from sympy import airyaiprime >>> from sympy.abc import z
>>> airyaiprime(z) airyaiprime(z)
已知有几个特殊值:
>>> airyaiprime(0) -3**(2/3)/(3*gamma(1/3)) >>> from sympy import oo >>> airyaiprime(oo) 0
Airy 函数服从镜像对称性:
>>> from sympy import conjugate >>> conjugate(airyaiprime(z)) airyaiprime(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(airyaiprime(z), z) z*airyai(z) >>> diff(airyaiprime(z), z, 2) z*airyaiprime(z) + airyai(z)
也支持级数展开:
>>> from sympy import series >>> series(airyaiprime(z), z, 0, 3) -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)
我们可以在整个复平面上以任意精度数值评估Airy函数:
>>> airyaiprime(-2).evalf(50) 0.61825902074169104140626429133247528291577794512415
将 \(\operatorname{Ai}'(z)\) 用超几何函数表示:
>>> from sympy import hyper >>> airyaiprime(z).rewrite(hyper) 3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))
- class sympy.functions.special.bessel.airybiprime(arg)[源代码][源代码]¶
第一类Airy函数的导数\(\operatorname{Bi}^\prime\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(arg)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
airyai
第一类艾里函数。
airybi
第二类艾里函数。
airyaiprime
第一类艾里函数的导数。
参考文献
[3]示例
创建一个 Airy 函数对象:
>>> from sympy import airybiprime >>> from sympy.abc import z
>>> airybiprime(z) airybiprime(z)
已知有几个特殊值:
>>> airybiprime(0) 3**(1/6)/gamma(1/3) >>> from sympy import oo >>> airybiprime(oo) oo >>> airybiprime(-oo) 0
Airy 函数服从镜像对称性:
>>> from sympy import conjugate >>> conjugate(airybiprime(z)) airybiprime(conjugate(z))
对 \(z\) 的微分是被支持的:
>>> from sympy import diff >>> diff(airybiprime(z), z) z*airybi(z) >>> diff(airybiprime(z), z, 2) z*airybiprime(z) + airybi(z)
也支持级数展开:
>>> from sympy import series >>> series(airybiprime(z), z, 0, 3) 3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
我们可以在整个复平面上以任意精度数值评估Airy函数:
>>> airybiprime(-2).evalf(50) 0.27879516692116952268509756941098324140300059345163
将 \(\operatorname{Bi}^\prime(z)\) 用超几何函数表示:
>>> from sympy import hyper >>> airybiprime(z).rewrite(hyper) 3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
B样条¶
- sympy.functions.special.bsplines.bspline_basis(d, knots, n, x)[源代码]¶
在 \(x\) 处的第 \(n\) 个 B 样条,度数为 \(d\),带有节点。
- 参数:
- d整数
bspline 的度数
- 结整数值列表
bspline 的节点点列表
- n整数
\(n\)-th B样条
- x符号
参考文献
示例
0 次样条在单个区间上的值为 1:
>>> from sympy import bspline_basis >>> from sympy.abc import x >>> d = 0 >>> knots = tuple(range(5)) >>> bspline_basis(d, knots, 0, x) Piecewise((1, (x >= 0) & (x <= 1)), (0, True))
对于给定的
(d, knots)
,定义了len(knots)-d-1
个 B 样条,它们由n
索引(从 0 开始)。以下是一个三次B样条的示例:
>>> bspline_basis(3, tuple(range(5)), 0, x) Piecewise((x**3/6, (x >= 0) & (x <= 1)), (-x**3/2 + 2*x**2 - 2*x + 2/3, (x >= 1) & (x <= 2)), (x**3/2 - 4*x**2 + 10*x - 22/3, (x >= 2) & (x <= 3)), (-x**3/6 + 2*x**2 - 8*x + 32/3, (x >= 3) & (x <= 4)), (0, True))
通过重复节点点,您可以在B样条及其导数中引入不连续性:
>>> d = 1 >>> knots = (0, 0, 2, 3, 4) >>> bspline_basis(d, knots, 0, x) Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True))
构建和评估B样条曲线非常耗时。如果你需要多次评估B样条曲线,最好先将其lambda化:
>>> from sympy import lambdify >>> d = 3 >>> knots = tuple(range(10)) >>> b0 = bspline_basis(d, knots, 0, x) >>> f = lambdify(x, b0) >>> y = f(0.5)
- sympy.functions.special.bsplines.bspline_basis_set(d, knots, x)[源代码][源代码]¶
返回在 x 处的
len(knots)-d-1
个度数为 d 的 B-样条,使用 knots。- 参数:
- d整数
bspline 的度数
- 结整数列表
bspline 的节点点列表
- x符号
示例
>>> from sympy import bspline_basis_set >>> from sympy.abc import x >>> d = 2 >>> knots = range(5) >>> splines = bspline_basis_set(d, knots, x) >>> splines [Piecewise((x**2/2, (x >= 0) & (x <= 1)), (-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)), (x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)), (0, True)), Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)), (-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)), (x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)), (0, True))]
- sympy.functions.special.bsplines.interpolating_spline(d, x, X, Y)[源代码][源代码]¶
返回通过给定 X 和 Y 值的度数为 d 的样条曲线。
- 参数:
- d整数
B样条的度数严格大于等于一
- x符号
- X严格递增实数值列表
样条线穿过的X坐标列表
- Y实数值列表
样条曲线通过的相应 Y 坐标列表
参见
bspline_basis_set
,interpolating_poly
示例
>>> from sympy import interpolating_spline >>> from sympy.abc import x >>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7]) Piecewise((3*x, (x >= 1) & (x <= 2)), (7 - x/2, (x >= 2) & (x <= 4)), (2*x/3 + 7/3, (x >= 4) & (x <= 7))) >>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3]) Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)), (10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4)))
黎曼Zeta函数及相关函数¶
- class sympy.functions.special.zeta_functions.zeta(s, a=None)[源代码][源代码]¶
Hurwitz zeta 函数(或 Riemann zeta 函数)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(s[, a])evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
[2]https://en.wikipedia.org/wiki/Hurwitz_zeta_函数
示例
对于 \(a = 1\),Hurwitz zeta 函数简化为著名的 Riemann zeta 函数:
\[\zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}.\]>>> from sympy import zeta >>> from sympy.abc import s >>> zeta(s, 1) zeta(s) >>> zeta(s) zeta(s)
黎曼zeta函数也可以用狄利克雷eta函数来表示:
>>> from sympy import dirichlet_eta >>> zeta(s).rewrite(dirichlet_eta) dirichlet_eta(s)/(1 - 2**(1 - s))
黎曼zeta函数在非负偶数和负整数值处与伯努利数和多项式相关:
>>> zeta(2) pi**2/6 >>> zeta(4) pi**4/90 >>> zeta(0) -1/2 >>> zeta(-1) -1/12 >>> zeta(-4) 0
具体的公式是:
\[\zeta(2n) = -\frac{(2\pi i)^{2n} B_{2n}}{2(2n)!}\]\[\zeta(-n,a) = -\frac{B_{n+1}(a)}{n+1}\]在正奇数整数上没有已知的封闭形式表达式,但可以通过数值评估来实现:
>>> zeta(3).n() 1.20205690315959
\(\zeta(s, a)\) 对 \(a\) 的导数可以计算:
>>> from sympy.abc import a >>> zeta(s, a).diff(a) -s*zeta(s + 1, a)
然而,关于 \(s\) 的导数没有有用的封闭形式表达式:
>>> zeta(s, a).diff(s) Derivative(zeta(s, a), s)
Hurwitz zeta 函数可以用 Lerch 超越函数来表示,
lerchphi
:>>> from sympy import lerchphi >>> zeta(s, a).rewrite(lerchphi) lerchphi(1, s, a)
- class sympy.functions.special.zeta_functions.dirichlet_eta(s, a=None)[源代码][源代码]¶
Dirichlet η 函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(s[, a])evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
[2]Peter Luschny, “An introduction to the Bernoulli function”, https://arxiv.org/abs/2009.06743
示例
>>> from sympy import dirichlet_eta, zeta >>> from sympy.abc import s >>> dirichlet_eta(s).rewrite(zeta) Piecewise((log(2), Eq(s, 1)), ((1 - 2**(1 - s))*zeta(s), True))
- class sympy.functions.special.zeta_functions.polylog(s, z)[源代码][源代码]¶
多对数函数。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(s, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
示例
对于 \(z \in \{0, 1, -1\}\),多对数函数会自动使用其他函数表示:
>>> from sympy import polylog >>> from sympy.abc import s >>> polylog(s, 0) 0 >>> polylog(s, 1) zeta(s) >>> polylog(s, -1) -dirichlet_eta(s)
如果 \(s\) 是一个负整数、\(0\) 或 \(1\),多对数函数可以用初等函数表示。这可以通过使用
expand_func()
来实现:>>> from sympy import expand_func >>> from sympy.abc import z >>> expand_func(polylog(1, z)) -log(1 - z) >>> expand_func(polylog(0, z)) z/(1 - z)
关于 \(z\) 的导数可以以闭式形式计算:
>>> polylog(s, z).diff(z) polylog(s - 1, z)/z
多对数函数可以用勒奇超越函数表示:
>>> from sympy import lerchphi >>> polylog(s, z).rewrite(lerchphi) z*lerchphi(z, s, 1)
- class sympy.functions.special.zeta_functions.lerchphi(*args)[源代码][源代码]¶
Lerch 超越函数(Lerch phi 函数)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(*args)返回应用于参数 args 的 cls 的规范形式。
evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]Bateman, H.; Erdelyi, A. (1953), 《高等超越函数》, 卷 I, 纽约: McGraw-Hill. 第 1.11 节。
[3]https://en.wikipedia.org/wiki/Lerch_超越函数
示例
Lerch 超越函数是一个相当一般的函数,因此它不会自动简化为更简单的函数。使用
expand_func()
来实现这一点。如果 \(z=1\),Lerch 超越函数简化为 Hurwitz zeta 函数:
>>> from sympy import lerchphi, expand_func >>> from sympy.abc import z, s, a >>> expand_func(lerchphi(1, s, a)) zeta(s, a)
更一般地,如果 \(z\) 是一个单位根,Lerch 超越函数简化为 Hurwitz zeta 函数之和:
>>> expand_func(lerchphi(-1, s, a)) zeta(s, a/2)/2**s - zeta(s, a/2 + 1/2)/2**s
如果 \(a=1\),Lerch 超越函数简化为多对数函数:
>>> expand_func(lerchphi(z, s, 1)) polylog(s, z)/z
更一般地,如果 \(a\) 是有理数,Lerch 超越函数简化为多对数函数的和:
>>> from sympy import S >>> expand_func(lerchphi(z, s, S(1)/2)) 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z)) >>> expand_func(lerchphi(z, s, S(3)/2)) -2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z
关于 \(z\) 和 \(a\) 的导数可以以闭合形式计算:
>>> lerchphi(z, s, a).diff(z) (-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z >>> lerchphi(z, s, a).diff(a) -s*lerchphi(z, s + 1, a)
- class sympy.functions.special.zeta_functions.stieltjes(n, a=None)[源代码][源代码]¶
表示在黎曼zeta函数的洛朗级数展开中出现的Stieltjes常数,\(\gamma_{k}\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n[, a])evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]https://en.wikipedia.org/wiki/Stieltjes_常数
示例
>>> from sympy import stieltjes >>> from sympy.abc import n, m >>> stieltjes(n) stieltjes(n)
第零个斯蒂尔切斯常数:
>>> stieltjes(0) EulerGamma >>> stieltjes(0, 1) EulerGamma
对于广义的斯蒂尔切斯常数:
>>> stieltjes(n, m) stieltjes(n, m)
常量仅定义为大于或等于0的整数:
>>> stieltjes(-1) zoo
超几何函数¶
- class sympy.functions.special.hyper.hyper(ap, bq, z)[源代码][源代码]¶
广义超几何函数由一个级数定义,其中相邻项的比率是求和指数的有理函数。当收敛时,它被解析延拓到可能的最大定义域。
- 属性:
ap
超几何函数的分子参数。
args
返回 ‘self’ 的参数元组。
argument
超几何函数的参数。
assumptions0
返回对象 \(type\) 假设。
bq
超几何函数的分母参数。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。convergence_statement
返回一个关于 z 的条件,使得级数收敛。
eta
与级数收敛性相关的一个量。
expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
radius_of_convergence
计算定义级数的收敛半径。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(ap, bq, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
[1]Luke, Y. L. (1969), 特殊函数及其近似, 第一卷
[2]https://en.wikipedia.org/wiki/广义超几何函数
示例
参数 \(a_p\) 和 \(b_q\) 可以作为任意可迭代对象传递,例如:
>>> from sympy import hyper >>> from sympy.abc import x, n, a >>> h = hyper((1, 2, 3), [3, 4], x); h hyper((1, 2), (4,), x) >>> hyper((3, 1, 2), [3, 4], x, evaluate=False) # don't remove duplicates hyper((1, 2, 3), (3, 4), x)
还有漂亮的打印功能(使用Unicode看起来更好):
>>> from sympy import pprint >>> pprint(h, use_unicode=False) _ |_ /1, 2 | \ | | | x| 2 1 \ 4 | /
参数必须始终是可迭代对象,即使它们是长度为一或零的向量:
>>> hyper((1, ), [], x) hyper((1,), (), x)
但当然它们可能是变量(但如果它们依赖于 \(x\),那么你不应该期望太多的实现功能):
>>> hyper((n, a), (n**2,), x) hyper((a, n), (n**2,), x)
超几何函数概括了许多命名的特殊函数。函数
hyperexpand()
尝试用命名的特殊函数来表达一个超几何函数。例如:>>> from sympy import hyperexpand >>> hyperexpand(hyper([], [], x)) exp(x)
你也可以使用
expand_func()
:>>> from sympy import expand_func >>> expand_func(x*hyper([1, 1], [2], -x)) log(x + 1)
更多示例:
>>> from sympy import S >>> hyperexpand(hyper([], [S(1)/2], -x**2/4)) cos(x) >>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2)) asin(x)
我们有时也可以对参数化函数进行
hyperexpand()
:>>> from sympy.abc import a >>> hyperexpand(hyper([-a], [], x)) (1 - x)**a
- property ap¶
超几何函数的分子参数。
- property argument¶
超几何函数的参数。
- property bq¶
超几何函数的分母参数。
- property convergence_statement¶
返回一个关于 z 的条件,使得级数收敛。
- property eta¶
与级数收敛性相关的一个量。
- property radius_of_convergence¶
计算定义级数的收敛半径。
示例
>>> from sympy import hyper >>> from sympy.abc import z >>> hyper((1, 2), [3], z).radius_of_convergence 1 >>> hyper((1, 2, 3), [4], z).radius_of_convergence 0 >>> hyper((1, 2), (3, 4), z).radius_of_convergence oo
- class sympy.functions.special.hyper.meijerg(*args)[源代码][源代码]¶
Meijer G-函数 由一个类似于逆梅林变换的梅林-巴恩斯型积分定义。它推广了超几何函数。
- 属性:
an
第一组分子参数。
aother
第二组分子参数。
ap
组合分子参数。
args
返回 ‘self’ 的参数元组。
argument
Meijer G-函数的参数。
assumptions0
返回对象 \(type\) 假设。
bm
第一组分母参数。
bother
第二组分母参数。
bq
组合分母参数。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。delta
与积分收敛区域相关的量,参见。
expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果表达式仅包含数值数据,则返回 true。
- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
nu
与积分收敛区域相关的量,参见。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(*args)返回应用于参数 args 的 cls 的规范形式。
evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
返回一个数 $P$ 使得 $G(x*exp(I*P)) == G(x)$。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrand
(s)获取定义的被积函数 D(s)。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]Luke, Y. L. (1969), 特殊函数及其近似, 第一卷
示例
你可以将参数作为四个单独的向量传递:
>>> from sympy import meijerg, Tuple, pprint >>> from sympy.abc import x, a >>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False) __1, 2 /1, 2 4, a | \ /__ | | x| \_|4, 1 \ 5 | /
或者作为两个嵌套的向量:
>>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False) __1, 2 /1, 2 3, 4 | \ /__ | | x| \_|4, 1 \ 5 | /
与超几何函数一样,参数可以作为任意可迭代对象传递。长度为零和一的向量也必须作为可迭代对象传递。参数不必是常量,但如果它们依赖于参数,则不应期望实现太多功能。
所有参数的子向量都可用:
>>> from sympy import pprint >>> g = meijerg([1], [2], [3], [4], x) >>> pprint(g, use_unicode=False) __1, 1 /1 2 | \ /__ | | x| \_|2, 2 \3 4 | / >>> g.an (1,) >>> g.ap (1, 2) >>> g.aother (2,) >>> g.bm (3,) >>> g.bq (3, 4) >>> g.bother (4,)
Meijer G-函数 是超几何函数的一般化。在某些情况下,它可以使用 Slater 定理 通过超几何函数来表达。例如:
>>> from sympy import hyperexpand >>> from sympy.abc import a, b, c >>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True) x**c*gamma(-a + c + 1)*hyper((-a + c + 1,), (-b + c + 1,), -x)/gamma(-b + c + 1)
因此,Meijer G-函数也包含了许多命名的函数作为特例。你可以使用
expand_func()
或hyperexpand()
来(尝试)将一个 Meijer G-函数重写为命名的特殊函数。例如:>>> from sympy import expand_func, S >>> expand_func(meijerg([[],[]], [[0],[]], -x)) exp(x) >>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2)) sin(x)/sqrt(pi)
- property an¶
第一组分子参数。
- property aother¶
第二组分子参数。
- property ap¶
组合分子参数。
- property argument¶
Meijer G-函数的参数。
- property bm¶
第一组分母参数。
- property bother¶
第二组分母参数。
- property bq¶
组合分母参数。
- property delta¶
与积分收敛区域相关的量,参见参考文献。
- get_period()[源代码][源代码]¶
返回一个数 \(P\) 使得 \(G(x*exp(I*P)) == G(x)\)。
示例
>>> from sympy import meijerg, pi, S >>> from sympy.abc import z
>>> meijerg([1], [], [], [], z).get_period() 2*pi >>> meijerg([pi], [], [], [], z).get_period() oo >>> meijerg([1, 2], [], [], [], z).get_period() oo >>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period() 12*pi
- property is_number¶
如果表达式仅包含数值数据,则返回 true。
- property nu¶
与积分收敛区域相关的量,参见参考文献。
- class sympy.functions.special.hyper.appellf1(a, b1, b2, c, x, y)[源代码][源代码]¶
这是两个变量的 Appell 超几何函数,如下所示:
\[F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}} \frac{x^m y^n}{m! n!}.\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(a, b1, b2, c, x, y)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
[1]示例
>>> from sympy import appellf1, symbols >>> x, y, a, b1, b2, c = symbols('x y a b1 b2 c') >>> appellf1(2., 1., 6., 4., 5., 6.) 0.0063339426292673 >>> appellf1(12., 12., 6., 4., 0.5, 0.12) 172870711.659936 >>> appellf1(40, 2, 6, 4, 15, 60) appellf1(40, 2, 6, 4, 15, 60) >>> appellf1(20., 12., 10., 3., 0.5, 0.12) 15605338197184.4 >>> appellf1(40, 2, 6, 4, x, y) appellf1(40, 2, 6, 4, x, y) >>> appellf1(a, b1, b2, c, x, y) appellf1(a, b1, b2, c, x, y)
椭圆积分¶
- class sympy.functions.special.elliptic_integrals.elliptic_k(m)[源代码][源代码]¶
第一类完全椭圆积分,定义为
\[K(m) = F\left(\tfrac{\pi}{2}\middle| m\right)\]其中 \(F\left(z\middle| m\right)\) 是第一类勒让德不完全椭圆积分。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(m)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
示例
>>> from sympy import elliptic_k, I >>> from sympy.abc import m >>> elliptic_k(0) pi/2 >>> elliptic_k(1.0 + I) 1.50923695405127 + 0.625146415202697*I >>> elliptic_k(m).series(n=3) pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3)
- class sympy.functions.special.elliptic_integrals.elliptic_f(z, m)[源代码][源代码]¶
第一类勒让德不完全椭圆积分,定义为
\[F\left(z\middle| m\right) = \int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}}\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(z, m)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
参考文献
示例
>>> from sympy import elliptic_f, I >>> from sympy.abc import z, m >>> elliptic_f(z, m).series(z) z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6) >>> elliptic_f(3.0 + I/2, 1.0 + I) 2.909449841483 + 1.74720545502474*I
- class sympy.functions.special.elliptic_integrals.elliptic_e(m, z=None)[源代码][源代码]¶
使用两个参数 \(z\) 和 \(m\) 调用,计算第二类不完全椭圆积分,定义为
\[ \begin{align}\begin{aligned}E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt\\E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt\end{aligned}\end{align} \]使用单个参数 \(m\) 调用,计算第二类勒让德完全椭圆积分。
\[E(m) = E\left(\tfrac{\pi}{2}\middle| m\right)\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(m[, z])evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import elliptic_e, I >>> from sympy.abc import z, m >>> elliptic_e(z, m).series(z) z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6) >>> elliptic_e(m).series(n=4) pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4) >>> elliptic_e(1 + I, 2 - I/2).n() 1.55203744279187 + 0.290764986058437*I >>> elliptic_e(0) pi/2 >>> elliptic_e(2.0 - I) 0.991052601328069 + 0.81879421395609*I
- class sympy.functions.special.elliptic_integrals.elliptic_pi(n, m, z=None)[源代码][源代码]¶
使用三个参数 \(n\)、\(z\) 和 \(m\) 调用时,计算第三类勒让德不完全椭圆积分,定义为
\[\Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt}{\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}}\]使用两个参数 \(n\) 和 \(m\) 调用,计算第三类完全椭圆积分:
\[$\Pi\left(n\middle| m\right) = \Pi\left(n; \tfrac{\pi}{2}\middle| m\right)$\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, m[, z])evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import elliptic_pi, I >>> from sympy.abc import z, n, m >>> elliptic_pi(n, z, m).series(z, n=4) z + z**3*(m/6 + n/3) + O(z**4) >>> elliptic_pi(0.5 + I, 1.0 - I, 1.2) 2.50232379629182 - 0.760939574180767*I >>> elliptic_pi(0, 0) pi/2 >>> elliptic_pi(1.0 - I/3, 2.0 + I) 3.29136443417283 + 0.32555634906645*I
Mathieu 函数¶
- class sympy.functions.special.mathieu_functions.MathieuBase(*args)[源代码][源代码]¶
Mathieu 函数的抽象基类。
此类旨在减少代码重复。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(*args)返回应用于参数 args 的 cls 的规范形式。
evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
- class sympy.functions.special.mathieu_functions.mathieus(a, q, z)[源代码][源代码]¶
Mathieu 正弦函数 \(S(a,q,z)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(a, q, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
mathieuc
Mathieu 余弦函数。
mathieusprime
Mathieu 正弦函数的导数。
mathieucprime
Mathieu 余弦函数的导数。
参考文献
示例
>>> from sympy import diff, mathieus >>> from sympy.abc import a, q, z
>>> mathieus(a, q, z) mathieus(a, q, z)
>>> mathieus(a, 0, z) sin(sqrt(a)*z)
>>> diff(mathieus(a, q, z), z) mathieusprime(a, q, z)
- class sympy.functions.special.mathieu_functions.mathieuc(a, q, z)[源代码][源代码]¶
Mathieu 余弦函数 \(C(a,q,z)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(a, q, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
mathieus
Mathieu 正弦函数
mathieusprime
Mathieu 正弦函数的导数
mathieucprime
Mathieu 余弦函数的导数
参考文献
示例
>>> from sympy import diff, mathieuc >>> from sympy.abc import a, q, z
>>> mathieuc(a, q, z) mathieuc(a, q, z)
>>> mathieuc(a, 0, z) cos(sqrt(a)*z)
>>> diff(mathieuc(a, q, z), z) mathieucprime(a, q, z)
- class sympy.functions.special.mathieu_functions.mathieusprime(a, q, z)[源代码][源代码]¶
Mathieu Sine 函数的导数 \(S^{\prime}(a,q,z)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(a, q, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
mathieus
Mathieu 正弦函数
mathieuc
Mathieu 余弦函数
mathieucprime
Mathieu 余弦函数的导数
参考文献
示例
>>> from sympy import diff, mathieusprime >>> from sympy.abc import a, q, z
>>> mathieusprime(a, q, z) mathieusprime(a, q, z)
>>> mathieusprime(a, 0, z) sqrt(a)*cos(sqrt(a)*z)
>>> diff(mathieusprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieus(a, q, z)
- class sympy.functions.special.mathieu_functions.mathieucprime(a, q, z)[源代码][源代码]¶
Mathieu 余弦函数的导数 \(C^{\prime}(a,q,z)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(a, q, z)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
mathieus
Mathieu 正弦函数
mathieuc
Mathieu 余弦函数
mathieusprime
Mathieu 正弦函数的导数
参考文献
示例
>>> from sympy import diff, mathieucprime >>> from sympy.abc import a, q, z
>>> mathieucprime(a, q, z) mathieucprime(a, q, z)
>>> mathieucprime(a, 0, z) -sqrt(a)*sin(sqrt(a)*z)
>>> diff(mathieucprime(a, q, z), z) (-a + 2*q*cos(2*z))*mathieuc(a, q, z)
正交多项式¶
该模块主要实现了特殊正交多项式。
另请参见 functions.combinatorial.numbers ,其中包含一些组合多项式。
雅可比多项式¶
- class sympy.functions.special.polynomials.jacobi(n, a, b, x)[源代码][源代码]¶
雅可比多项式 \(P_n^{\left(\alpha, \beta\right)}(x)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, a, b, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
gegenbauer
chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[1][2]https://mathworld.wolfram.com/Jacobi多项式.html
示例
>>> from sympy import jacobi, S, conjugate, diff >>> from sympy.abc import a, b, n, x
>>> jacobi(0, a, b, x) 1 >>> jacobi(1, a, b, x) a/2 - b/2 + x*(a/2 + b/2 + 1) >>> jacobi(2, a, b, x) a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 + b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2
>>> jacobi(n, a, b, x) jacobi(n, a, b, x)
>>> jacobi(n, a, a, x) RisingFactorial(a + 1, n)*gegenbauer(n, a + 1/2, x)/RisingFactorial(2*a + 1, n)
>>> jacobi(n, 0, 0, x) legendre(n, x)
>>> jacobi(n, S(1)/2, S(1)/2, x) RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1)
>>> jacobi(n, -S(1)/2, -S(1)/2, x) RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n)
>>> jacobi(n, a, b, -x) (-1)**n*jacobi(n, b, a, x)
>>> jacobi(n, a, b, 0) gamma(a + n + 1)*hyper((-n, -b - n), (a + 1,), -1)/(2**n*factorial(n)*gamma(a + 1)) >>> jacobi(n, a, b, 1) RisingFactorial(a + 1, n)/factorial(n)
>>> conjugate(jacobi(n, a, b, x)) jacobi(n, conjugate(a), conjugate(b), conjugate(x))
>>> diff(jacobi(n,a,b,x), x) (a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x)
- sympy.functions.special.polynomials.jacobi_normalized(n, a, b, x)[源代码][源代码]¶
雅可比多项式 \(P_n^{\left(\alpha, \beta\right)}(x)\)。
- 参数:
- n多项式的整数度
- aalpha 值
- bbeta 值
- x符号
参见
gegenbauer
chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[1][2]https://mathworld.wolfram.com/Jacobi多项式.html
示例
>>> from sympy import jacobi_normalized >>> from sympy.abc import n,a,b,x
>>> jacobi_normalized(n, a, b, x) jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))
Gegenbauer 多项式¶
- class sympy.functions.special.polynomials.gegenbauer(n, a, x)[源代码][源代码]¶
Gegenbauer多项式 \(C_n^{\left(\alpha\right)}(x)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, a, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
示例
>>> from sympy import gegenbauer, conjugate, diff >>> from sympy.abc import n,a,x >>> gegenbauer(0, a, x) 1 >>> gegenbauer(1, a, x) 2*a*x >>> gegenbauer(2, a, x) -a + x**2*(2*a**2 + 2*a) >>> gegenbauer(3, a, x) x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a)
>>> gegenbauer(n, a, x) gegenbauer(n, a, x) >>> gegenbauer(n, a, -x) (-1)**n*gegenbauer(n, a, x)
>>> gegenbauer(n, a, 0) 2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(1/2 - n/2)*gamma(n + 1)) >>> gegenbauer(n, a, 1) gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))
>>> conjugate(gegenbauer(n, a, x)) gegenbauer(n, conjugate(a), conjugate(x))
>>> diff(gegenbauer(n, a, x), x) 2*a*gegenbauer(n - 1, a + 1, x)
切比雪夫多项式¶
- class sympy.functions.special.polynomials.chebyshevt(n, x)[源代码][源代码]¶
第一类切比雪夫多项式,\(T_n(x)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[1]https://en.wikipedia.org/wiki/切比雪夫多项式
示例
>>> from sympy import chebyshevt, diff >>> from sympy.abc import n,x >>> chebyshevt(0, x) 1 >>> chebyshevt(1, x) x >>> chebyshevt(2, x) 2*x**2 - 1
>>> chebyshevt(n, x) chebyshevt(n, x) >>> chebyshevt(n, -x) (-1)**n*chebyshevt(n, x) >>> chebyshevt(-n, x) chebyshevt(n, x)
>>> chebyshevt(n, 0) cos(pi*n/2) >>> chebyshevt(n, -1) (-1)**n
>>> diff(chebyshevt(n, x), x) n*chebyshevu(n - 1, x)
- class sympy.functions.special.polynomials.chebyshevu(n, x)[源代码][源代码]¶
第二类切比雪夫多项式,\(U_n(x)\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevt_root
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[1]https://en.wikipedia.org/wiki/切比雪夫多项式
示例
>>> from sympy import chebyshevu, diff >>> from sympy.abc import n,x >>> chebyshevu(0, x) 1 >>> chebyshevu(1, x) 2*x >>> chebyshevu(2, x) 4*x**2 - 1
>>> chebyshevu(n, x) chebyshevu(n, x) >>> chebyshevu(n, -x) (-1)**n*chebyshevu(n, x) >>> chebyshevu(-n, x) -chebyshevu(n - 2, x)
>>> chebyshevu(n, 0) cos(pi*n/2) >>> chebyshevu(n, 1) n + 1
>>> diff(chebyshevu(n, x), x) (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
- class sympy.functions.special.polynomials.chebyshevt_root(n, k)[源代码][源代码]¶
chebyshev_root(n, k)
返回第一类 \(n\) 次切比雪夫多项式的第 \(k\) 个根(从零开始索引);即,如果 \(0 \le k < n\),则chebyshevt(n, chebyshevt_root(n, k)) == 0
。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, k)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
示例
>>> from sympy import chebyshevt, chebyshevt_root >>> chebyshevt_root(3, 2) -sqrt(3)/2 >>> chebyshevt(3, chebyshevt_root(3, 2)) 0
- class sympy.functions.special.polynomials.chebyshevu_root(n, k)[源代码][源代码]¶
chebyshevu_root(n, k)
返回第二类第 \(n\) 次切比雪夫多项式的第 \(k\) 个根(从零开始索引);即,如果 \(0 \le k < n\),chebyshevu(n, chebyshevu_root(n, k)) == 0
。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, k)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
chebyshevt
,chebyshevt_root
,chebyshevu
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
示例
>>> from sympy import chebyshevu, chebyshevu_root >>> chebyshevu_root(3, 2) -sqrt(2)/2 >>> chebyshevu(3, chebyshevu_root(3, 2)) 0
勒让德多项式¶
- class sympy.functions.special.polynomials.legendre(n, x)[源代码][源代码]¶
legendre(n, x)
给出 \(x\) 的第 \(n\) 个勒让德多项式,\(P_n(x)\)- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevt_root
,chebyshevu
,chebyshevu_root
assoc_legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[1][2]https://mathworld.wolfram.com/Legendre多项式.html
示例
>>> from sympy import legendre, diff >>> from sympy.abc import x, n >>> legendre(0, x) 1 >>> legendre(1, x) x >>> legendre(2, x) 3*x**2/2 - 1/2 >>> legendre(n, x) legendre(n, x) >>> diff(legendre(n,x), x) n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1)
- class sympy.functions.special.polynomials.assoc_legendre(n, m, x)[源代码][源代码]¶
assoc_legendre(n, m, x)
给出 \(P_n^m(x)\),其中 \(n\) 和 \(m\) 分别是度数和阶数,或者与第 n 阶勒让德多项式 \(P_n(x)\) 相关的表达式,其关系如下:\[P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{\mathrm{d}^m P_n(x)}{\mathrm{d} x^m}\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, m, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
hermite
,hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[2]https://mathworld.wolfram.com/Legendre多项式.html
示例
>>> from sympy import assoc_legendre >>> from sympy.abc import x, m, n >>> assoc_legendre(0,0, x) 1 >>> assoc_legendre(1,0, x) x >>> assoc_legendre(1,1, x) -sqrt(1 - x**2) >>> assoc_legendre(n,m,x) assoc_legendre(n, m, x)
埃尔米特多项式¶
- class sympy.functions.special.polynomials.hermite(n, x)[源代码][源代码]¶
hermite(n, x)
给出 \(x\) 中的第 \(n\) 个 Hermite 多项式,\(H_n(x)\)。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite_prob
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[2]https://mathworld.wolfram.com/Hermite多项式.html
示例
>>> from sympy import hermite, diff >>> from sympy.abc import x, n >>> hermite(0, x) 1 >>> hermite(1, x) 2*x >>> hermite(2, x) 4*x**2 - 2 >>> hermite(n, x) hermite(n, x) >>> diff(hermite(n,x), x) 2*n*hermite(n - 1, x) >>> hermite(n, -x) (-1)**n*hermite(n, x)
- class sympy.functions.special.polynomials.hermite_prob(n, x)[源代码][源代码]¶
hermite_prob(n, x)
给出 \(x\) 中的第 \(n\) 个概率论者的 Hermite 多项式,\(He_n(x)\)。- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
laguerre
,assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[2]https://mathworld.wolfram.com/Hermite多项式.html
示例
>>> from sympy import hermite_prob, diff, I >>> from sympy.abc import x, n >>> hermite_prob(1, x) x >>> hermite_prob(5, x) x**5 - 10*x**3 + 15*x >>> diff(hermite_prob(n,x), x) n*hermite_prob(n - 1, x) >>> hermite_prob(n, -x) (-1)**n*hermite_prob(n, x)
多项式 \(He_n(x)\) 的系数绝对值之和是完整图 \(K_n\) 中的匹配数或电话号码,在 OEIS 中为 A000085:
>>> [hermite_prob(n,I) / I**n for n in range(11)] [1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496]
拉盖尔多项式¶
- class sympy.functions.special.polynomials.laguerre(n, x)[源代码][源代码]¶
返回 \(x\) 中的第 \(n\) 个拉盖尔多项式,\(L_n(x)\)。
- 参数:
- n整数
拉盖尔多项式的阶数。必须为 \(n \ge 0\)。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
assoc_laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
[2]https://mathworld.wolfram.com/Laguerre多项式.html
示例
>>> from sympy import laguerre, diff >>> from sympy.abc import x, n >>> laguerre(0, x) 1 >>> laguerre(1, x) 1 - x >>> laguerre(2, x) x**2/2 - 2*x + 1 >>> laguerre(3, x) -x**3/6 + 3*x**2/2 - 3*x + 1
>>> laguerre(n, x) laguerre(n, x)
>>> diff(laguerre(n, x), x) -assoc_laguerre(n - 1, 1, x)
- class sympy.functions.special.polynomials.assoc_laguerre(n, alpha, x)[源代码][源代码]¶
返回 \(x\) 中的第 \(n\) 个广义拉盖尔多项式,\(L_n(x)\)。
- 参数:
- n整数
拉盖尔多项式的阶数。必须为 \(n \ge 0\)。
- alpha表达式
任意表达式。对于
alpha=0
,将生成常规的拉盖尔多项式。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, alpha, x)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
jacobi
,gegenbauer
chebyshevt
,chebyshevt_root
,chebyshevu
,chebyshevu_root
legendre
,assoc_legendre
hermite
,hermite_prob
laguerre
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.hermite_prob_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
参考文献
示例
>>> from sympy import assoc_laguerre, diff >>> from sympy.abc import x, n, a >>> assoc_laguerre(0, a, x) 1 >>> assoc_laguerre(1, a, x) a - x + 1 >>> assoc_laguerre(2, a, x) a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1 >>> assoc_laguerre(3, a, x) a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) + x*(-a**2/2 - 5*a/2 - 3) + 1
>>> assoc_laguerre(n, a, 0) binomial(a + n, a)
>>> assoc_laguerre(n, a, x) assoc_laguerre(n, a, x)
>>> assoc_laguerre(n, 0, x) laguerre(n, x)
>>> diff(assoc_laguerre(n, a, x), x) -assoc_laguerre(n - 1, a + 1, x)
>>> diff(assoc_laguerre(n, a, x), a) Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1))
球谐函数¶
- class sympy.functions.special.spherical_harmonics.Ynm(n, m, theta, phi)[源代码][源代码]¶
球谐函数定义为
\[Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} \exp(i m \varphi) \mathrm{P}_n^m\left(\cos(\theta)\right)\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, m, theta, phi)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import Ynm, Symbol, simplify >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> Ynm(n, m, theta, phi) Ynm(n, m, theta, phi)
已知几种对称性,对于顺序:
>>> Ynm(n, -m, theta, phi) (-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
同样适用于角度:
>>> Ynm(n, m, -theta, phi) Ynm(n, m, theta, phi)
>>> Ynm(n, m, theta, -phi) exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
对于特定的整数 \(n\) 和 \(m\),我们可以将谐波评估为更有用的表达式:
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi))
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True)) sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True)) sqrt(3)*cos(theta)/(2*sqrt(pi))
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True)) -sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(2, -2, theta, phi).expand(func=True)) sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi))
>>> simplify(Ynm(2, -1, theta, phi).expand(func=True)) sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 0, theta, phi).expand(func=True)) sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi))
>>> simplify(Ynm(2, 1, theta, phi).expand(func=True)) -sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 2, theta, phi).expand(func=True)) sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi))
我们可以对两个角度进行函数微分:
>>> from sympy import Ynm, Symbol, diff >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> diff(Ynm(n, m, theta, phi), theta) m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi)
>>> diff(Ynm(n, m, theta, phi), phi) I*m*Ynm(n, m, theta, phi)
进一步地,我们可以计算复共轭:
>>> from sympy import Ynm, Symbol, conjugate >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> conjugate(Ynm(n, m, theta, phi)) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
为了得到球坐标系中众所周知的表达式,我们使用完全展开:
>>> from sympy import Ynm, Symbol, expand_func >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi")
>>> expand_func(Ynm(n, m, theta, phi)) sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi))
- sympy.functions.special.spherical_harmonics.Ynm_c(n, m, theta, phi)[源代码][源代码]¶
共轭球谐函数定义为
\[\overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi).\]参考文献
示例
>>> from sympy import Ynm_c, Symbol, simplify >>> from sympy.abc import n,m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Ynm_c(n, m, theta, phi) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi) >>> Ynm_c(n, m, -theta, phi) (-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
对于特定的整数 \(n\) 和 \(m\),我们可以将谐波评估为更有用的表达式:
>>> simplify(Ynm_c(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi)) >>> simplify(Ynm_c(1, -1, theta, phi).expand(func=True)) sqrt(6)*exp(I*(-phi + 2*conjugate(phi)))*sin(theta)/(4*sqrt(pi))
- class sympy.functions.special.spherical_harmonics.Znm(n, m, theta, phi)[源代码][源代码]¶
定义为实球谐函数
\[\begin{split}Z_n^m(\theta, \varphi) := \begin{cases} \frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\ \end{cases}\end{split}\]以简化形式给出
\[\begin{split}Z_n^m(\theta, \varphi) = \begin{cases} \frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\ Y_n^m(\theta, \varphi) &\quad m = 0 \\ \frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\ \end{cases}\end{split}\]- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_algebraic
- is_antihermitian
- is_commutative
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_complex
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_extended_real
- is_finite
- is_hermitian
- is_imaginary
- is_infinite
- is_integer
- is_irrational
- is_negative
- is_noninteger
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_rational
- is_real
- is_transcendental
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(n, m, theta, phi)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参考文献
示例
>>> from sympy import Znm, Symbol, simplify >>> from sympy.abc import n, m >>> theta = Symbol("theta") >>> phi = Symbol("phi") >>> Znm(n, m, theta, phi) Znm(n, m, theta, phi)
对于特定的整数 n 和 m,我们可以将谐波评估为更有用的表达式:
>>> simplify(Znm(0, 0, theta, phi).expand(func=True)) 1/(2*sqrt(pi)) >>> simplify(Znm(1, 1, theta, phi).expand(func=True)) -sqrt(3)*sin(theta)*cos(phi)/(2*sqrt(pi)) >>> simplify(Znm(2, 1, theta, phi).expand(func=True)) -sqrt(15)*sin(2*theta)*cos(phi)/(4*sqrt(pi))
张量函数¶
- sympy.functions.special.tensor_functions.Eijk(*args, **kwargs)[源代码][源代码]¶
表示 Levi-Civita 符号。
这是一个
LeviCivita()
的兼容包装器。参见
- class sympy.functions.special.tensor_functions.LeviCivita(*args)[源代码][源代码]¶
表示 Levi-Civita 符号。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- is_antihermitian
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_negative
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
- is_polar
- is_positive
- is_prime
- is_zero
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(*args)evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
示例
>>> from sympy import LeviCivita >>> from sympy.abc import i, j, k >>> LeviCivita(1, 2, 3) 1 >>> LeviCivita(1, 3, 2) -1 >>> LeviCivita(1, 2, 2) 0 >>> LeviCivita(i, j, k) LeviCivita(i, j, k) >>> LeviCivita(i, j, i) 0
- class sympy.functions.special.tensor_functions.KroneckerDelta(i, j, delta_range=None)[源代码][源代码]¶
离散的,或克罗内克,δ函数。
- 参数:
- i数字, 符号
delta 函数的第一个索引。
- j数字, 符号
delta 函数的第二个索引。
- 属性:
args
返回 ‘self’ 的参数元组。
assumptions0
返回对象 \(type\) 假设。
canonical_variables
返回一个字典,将
self.bound_symbols
中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。- delta_range
expr_free_symbols
类似于
free_symbols
,但仅在自由符号包含在表达式节点中时返回它们。func
表达式中的顶级函数。
- 索引
indices_contain_equal_information
如果索引都在费米能级之上或之下,则返回 True。
is_above_fermi
如果 Delta 在费米能级以上可以不为零,则为真。
- is_antihermitian
is_below_fermi
如果费米能级以下Delta可以非零,则为True。
is_comparable
如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。
- is_composite
- is_even
- is_extended_negative
- is_extended_nonnegative
- is_extended_nonpositive
- is_extended_nonzero
- is_extended_positive
- is_negative
- is_nonnegative
- is_nonpositive
- is_nonzero
is_number
如果
self
没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。- is_odd
is_only_above_fermi
如果 Delta 被限制在费米能级以上,则为真。
is_only_below_fermi
如果 Delta 被限制在费米能级以下,则为真。
- is_polar
- is_positive
- is_prime
- is_zero
killable_index
返回在最终表达式中首选替换的索引。
preferred_index
返回在最终表达式中首选保留的索引。
方法
apart
([x])请参阅 sympy.polys 中的 apart 函数。
args_cnc
([cset, warn, split_1])返回 [交换因子, 非交换因子] 的自身。
as_coeff_Add
([rational])高效地提取求和的系数。
as_coeff_Mul
([rational])高效地提取乘积的系数。
as_coeff_add
(*deps)返回元组 (c, args),其中 self 被写成一个 Add,
a
。as_coeff_exponent
(x)c*x**e -> c,e
其中 x 可以是任何符号表达式。as_coeff_mul
(*deps, **kwargs)返回元组 (c, args),其中 self 被写成一个 Mul,
m
。as_coefficient
(expr)提取给定表达式中的符号系数。
as_coefficients_dict
(*syms)返回一个字典,将术语映射到它们的 Rational 系数。
as_content_primitive
([radical, clear])此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。
as_dummy
()返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。
as_expr
(*gens)将多项式转换为 SymPy 表达式。
as_independent
(*deps, **hint)将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。
as_leading_term
(*symbols[, logx, cdir])返回自身级数展开的主导(非零)项。
as_numer_denom
()返回一个表达式的分子和分母。
as_ordered_factors
([order])返回有序因子列表(如果是 Mul),否则返回 [self]。
as_ordered_terms
([order, data])将表达式转换为有序的项列表。
as_poly
(*gens, **args)将
self
转换为多项式,或返回None
。as_powers_dict
()将自身作为一个因子的字典返回,每个因子都被视为一个幂。
as_real_imag
([deep])对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。
as_terms
()将一个表达式转换为项的列表。
aseries
([x, n, bound, hir])自变量的渐近级数展开
atoms
(*types)返回构成当前对象的原子。
cancel
(*gens, **args)参见 sympy.polys 中的取消函数
class_key
()coeff
(x[, n, right, _first])返回包含
x**n
的项中的系数。collect
(syms[, func, evaluate, exact, ...])请参阅 sympy.simplify 中的 collect 函数。
combsimp
()请参阅 sympy.simplify 中的 combsimp 函数。
compare
(other)如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。
compute_leading_term
(x[, logx])已弃用的函数,用于计算级数的首项。
conjugate
()返回 'self' 的复数共轭。
could_extract_minus_sign
()如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。
count
(query)计算匹配的子表达式的数量。
count_ops
([visual])doit
(**hints)评估默认情况下不评估的对象,如极限、积分、求和和乘积。
dummy_eq
(other[, symbol])比较两个表达式并处理哑符号。
equals
(other[, failing_expression])如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。
eval
(i, j[, delta_range])计算离散delta函数。
evalf
([n, subs, maxn, chop, strict, quad, ...])将给定的公式计算到 n 位精度。
expand
([deep, modulus, power_base, ...])使用提示扩展表达式。
extract_additively
(c)如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。
extract_branch_factor
([allow_half])尝试以
exp_polar(2*pi*I*n)*z
的方式优雅地表达自身。extract_multiplicatively
(c)如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。
factor
(*gens, **args)参见 sympy.polys.polytools 中的 factor() 函数
fdiff
([argindex])返回函数的导数。
find
(query[, group])查找所有匹配查询的子表达式。
fourier_series
([limits])计算自身的傅里叶正弦/余弦级数。
fps
([x, x0, dir, hyper, order, rational, full])计算自身的形式幂级数。
fromiter
(args, **assumptions)从可迭代对象创建一个新对象。
gammasimp
()参见 sympy.simplify 中的 gammasimp 函数
getO
()如果有加法 O(..) 符号,则返回该符号,否则返回 None。
getn
()返回表达式的顺序。
has
(*patterns)测试是否有任何子表达式匹配任何模式。
has_free
(*patterns)如果 self 包含对象
x
作为自由表达式,则返回 True,否则返回 False。has_xfree
(s)如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。
integrate
(*args, **kwargs)请参阅 sympy.integrals 中的 integrate 函数。
invert
(g, *gens, **args)返回
self
对g
的乘法逆元,其中self``(和 ``g
)可以是符号表达式。is_algebraic_expr
(*syms)此测试给定的表达式是否在给定的符号 syms 中是代数的。
is_constant
(*wrt, **flags)如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。
is_meromorphic
(x, a)此测试表达式是否作为给定符号
x
的函数在点a
处是亚纯的。is_polynomial
(*syms)如果 self 是 syms 中的多项式,则返回 True,否则返回 False。
is_rational_function
(*syms)测试函数是否是给定符号 syms 中的两个多项式的比率。
is_same
(b[, approx])如果 a 和 b 结构相同则返回 True,否则返回 False。
is_singular
(a)测试参数是否为本质奇点或分支点,或者函数是否为非全纯函数。
leadterm
(x[, logx, cdir])返回前导项 a*x**b 作为元组 (a, b)。
limit
(x, xlim[, dir])计算极限 x->xlim。
lseries
([x, x0, dir, logx, cdir])用于生成序列项的迭代器的包装器。
match
(pattern[, old])模式匹配。
matches
(expr[, repl_dict, old])用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。
n
([n, subs, maxn, chop, strict, quad, verbose])将给定的公式计算到 n 位精度。
normal
()返回表达式为分数形式。
nseries
([x, x0, n, dir, logx, cdir])如果假设允许,则包装到 _eval_nseries,否则包装到 series。
nsimplify
([constants, tolerance, full])参见 sympy.simplify 中的 nsimplify 函数
powsimp
(*args, **kwargs)请参阅 sympy.simplify 中的 powsimp 函数
primitive
()返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。
radsimp
(**kwargs)参见 sympy.simplify 中的 radsimp 函数
ratsimp
()参见 sympy.simplify 中的 ratsimp 函数。
rcall
(*args)通过表达式树递归应用于参数。
refine
([assumption])请参阅 sympy.assumptions 中的 refine 函数。
removeO
()如果存在,移除加性的 O(..) 符号
replace
(query, value[, map, simultaneous, exact])将
self
中匹配的子表达式替换为value
。rewrite
(*args[, deep])使用定义的规则重写 self。
round
([n])返回 x 四舍五入到给定的十进制位数。
separate
([deep, force])参见 sympy.simplify 中的单独函数
series
([x, x0, n, dir, logx, cdir])在
x = x0
附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。simplify
(**kwargs)请参阅 sympy.simplify 中的 simplify 函数。
sort_key
([order])subs
(*args, **kwargs)在简化参数后,在表达式中用新内容替换旧内容。
taylor_term
(n, x, *previous_terms)泰勒项的一般方法。
together
(*args, **kwargs)请参阅 sympy.polys 中的 together 函数。
trigsimp
(**args)参见 sympy.simplify 中的 trigsimp 函数
xreplace
(**_)伴随
as_base_exp
复制
差异
目录
is_hypergeometric
转置
参见
eval
DiracDelta
参考文献
示例
一个使用整数索引的示例:
>>> from sympy import KroneckerDelta >>> KroneckerDelta(1, 2) 0 >>> KroneckerDelta(3, 3) 1
符号索引:
>>> from sympy.abc import i, j, k >>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1)
- classmethod eval(i, j, delta_range=None)[源代码][源代码]¶
计算离散delta函数。
示例
>>> from sympy import KroneckerDelta >>> from sympy.abc import i, j, k
>>> KroneckerDelta(i, j) KroneckerDelta(i, j) >>> KroneckerDelta(i, i) 1 >>> KroneckerDelta(i, i + 1) 0 >>> KroneckerDelta(i, i + 1 + k) KroneckerDelta(i, i + k + 1)
# 间接文档测试
- property indices_contain_equal_information¶
如果索引都在费米能级之上或之下,则返回 True。
示例
>>> from sympy import KroneckerDelta, Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, q).indices_contain_equal_information True >>> KroneckerDelta(p, q+1).indices_contain_equal_information True >>> KroneckerDelta(i, p).indices_contain_equal_information False
- property is_above_fermi¶
如果 Delta 在费米能级以上可以不为零,则为真。
示例
>>> from sympy import KroneckerDelta, Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_above_fermi True >>> KroneckerDelta(p, i).is_above_fermi False >>> KroneckerDelta(p, q).is_above_fermi True
- property is_below_fermi¶
如果费米能级以下Delta可以非零,则为True。
示例
>>> from sympy import KroneckerDelta, Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_below_fermi False >>> KroneckerDelta(p, i).is_below_fermi True >>> KroneckerDelta(p, q).is_below_fermi True
- property is_only_above_fermi¶
如果 Delta 被限制在费米能级以上,则为真。
示例
>>> from sympy import KroneckerDelta, Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, a).is_only_above_fermi True >>> KroneckerDelta(p, q).is_only_above_fermi False >>> KroneckerDelta(p, i).is_only_above_fermi False
- property is_only_below_fermi¶
如果 Delta 被限制在费米能级以下,则为真。
示例
>>> from sympy import KroneckerDelta, Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> q = Symbol('q') >>> KroneckerDelta(p, i).is_only_below_fermi True >>> KroneckerDelta(p, q).is_only_below_fermi False >>> KroneckerDelta(p, a).is_only_below_fermi False
- property killable_index¶
返回在最终表达式中首选替换的索引。
示例
>>> from sympy import KroneckerDelta, Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).killable_index p >>> KroneckerDelta(p, a).killable_index p >>> KroneckerDelta(i, j).killable_index j
- property preferred_index¶
返回在最终表达式中首选保留的索引。
示例
>>> from sympy import KroneckerDelta, Symbol >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> j = Symbol('j', below_fermi=True) >>> p = Symbol('p') >>> KroneckerDelta(p, i).preferred_index i >>> KroneckerDelta(p, a).preferred_index a >>> KroneckerDelta(i, j).preferred_index i