旋转

量子力学角动量。

class sympy.physics.quantum.spin.J2Op(*args, **kwargs)[源代码][源代码]

J^2 算符。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
is_unitary
label

标签是对象的唯一标识符集。

名称

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

inv

反向

is_hypergeometric

矩阵元素

转置

class sympy.physics.quantum.spin.JxBra(j, m)[源代码][源代码]

Jx 的 Eigenbra

参见 JzKet 以了解自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

coupled_class

差异

目录

is_hypergeometric

转置

参见

JzKet

自旋态的使用

class sympy.physics.quantum.spin.JxBraCoupled(j, m, jn, *jcoupling)[源代码][源代码]

耦合的 Jx 本征带。

参见 JzKetCoupled 以了解耦合自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

coupled_jn
coupled_n
耦合
dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
jn
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

uncoupled_class

参见

JzKetCoupled

耦合自旋态的使用

class sympy.physics.quantum.spin.JxKet(j, m)[源代码][源代码]

Jx 的本征态。

参见 JzKet 以了解自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

coupled_class

差异

目录

is_hypergeometric

转置

参见

JzKet

自旋态的使用

class sympy.physics.quantum.spin.JxKetCoupled(j, m, jn, *jcoupling)[源代码][源代码]

Jx 的耦合本征态。

参见 JzKetCoupled 以了解耦合自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

coupled_jn
coupled_n
耦合
dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
jn
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

uncoupled_class

参见

JzKetCoupled

耦合自旋态的使用

class sympy.physics.quantum.spin.JyBra(j, m)[源代码][源代码]

Jy的Eigenbra。

参见 JzKet 以了解自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

coupled_class

差异

目录

is_hypergeometric

转置

参见

JzKet

自旋态的使用

class sympy.physics.quantum.spin.JyBraCoupled(j, m, jn, *jcoupling)[源代码][源代码]

耦合的 Jy 本征带

参见 JzKetCoupled 以了解耦合自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

coupled_jn
coupled_n
耦合
dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
jn
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

uncoupled_class

参见

JzKetCoupled

耦合自旋态的使用

class sympy.physics.quantum.spin.JyKet(j, m)[源代码][源代码]

Jy 的本征态。

参见 JzKet 以了解自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

coupled_class

差异

目录

is_hypergeometric

转置

参见

JzKet

自旋态的使用

class sympy.physics.quantum.spin.JyKetCoupled(j, m, jn, *jcoupling)[源代码][源代码]

Jy 的耦合本征态。

参见 JzKetCoupled 以了解耦合自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

coupled_jn
coupled_n
耦合
dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
jn
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

uncoupled_class

参见

JzKetCoupled

耦合自旋态的使用

class sympy.physics.quantum.spin.JzBra(j, m)[源代码][源代码]

Jz 的 Eigenbra

参见 JzKet 以了解自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

coupled_class

差异

目录

is_hypergeometric

转置

参见

JzKet

自旋态的使用

class sympy.physics.quantum.spin.JzBraCoupled(j, m, jn, *jcoupling)[源代码][源代码]

Jz 的耦合本征态。

参见 JzKetCoupled 以了解耦合自旋本征态的使用。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

coupled_jn
coupled_n
耦合
dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
jn
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

uncoupled_class

参见

JzKetCoupled

耦合自旋态的使用

class sympy.physics.quantum.spin.JzKet(j, m)[源代码][源代码]

Jz 的本征态。

自旋态,即 Jz 算符的本征态。未耦合态,即表示多个独立自旋态相互作用的态,被定义为态的张量积。

参数:
j数字, 符号

总自旋角动量

m数字, 符号

Jz 自旋算符的本征值

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

coupled_class

差异

目录

is_hypergeometric

转置

参见

JzKetCoupled

耦合本征态

sympy.physics.quantum.tensorproduct.TensorProduct

用于指定未耦合状态

uncouple

解耦给定耦合参数的状态

couple

未耦合态的耦合

示例

正常状态:

定义简单的自旋态,包括数值和符号:

>>> from sympy.physics.quantum.spin import JzKet, JxKet
>>> from sympy import symbols
>>> JzKet(1, 0)
|1,0>
>>> j, m = symbols('j m')
>>> JzKet(j, m)
|j,m>

用 Jx 算符的本征态重写 JzKet:注意:结果的本征态是 JxKet

>>> JzKet(1,1).rewrite("Jx")
|1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2

获取状态在 Jx 算符基元素方面的向量表示:

>>> from sympy.physics.quantum.represent import represent
>>> from sympy.physics.quantum.spin import Jx, Jz
>>> represent(JzKet(1,-1), basis=Jx)
Matrix([
[      1/2],
[sqrt(2)/2],
[      1/2]])

在状态之间应用内积:

>>> from sympy.physics.quantum.innerproduct import InnerProduct
>>> from sympy.physics.quantum.spin import JxBra
>>> i = InnerProduct(JxBra(1,1), JzKet(1,1))
>>> i
<1,1|1,1>
>>> i.doit()
1/2

未耦合状态:

将非耦合态定义为两个 Jz 本征态之间的张量积:

>>> from sympy.physics.quantum.tensorproduct import TensorProduct
>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')
>>> TensorProduct(JzKet(1,0), JzKet(1,1))
|1,0>x|1,1>
>>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2))
|j1,m1>x|j2,m2>

张量积可以被重写,在这种情况下,构成张量积的本征态被重写为新的基:

>>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz')
|1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2

TensorProduct 的 represent 方法给出了状态的向量表示。注意,乘积基中的状态等价于各成分本征态的向量表示的张量积:

>>> represent(TensorProduct(JzKet(1,0),JzKet(1,1)))
Matrix([
[0],
[0],
[0],
[1],
[0],
[0],
[0],
[0],
[0]])
>>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz)
Matrix([
[      1/2],
[sqrt(2)/2],
[      1/2],
[        0],
[        0],
[        0],
[        0],
[        0],
[        0]])
class sympy.physics.quantum.spin.JzKetCoupled(j, m, jn, *jcoupling)[源代码][源代码]

耦合本征态 Jz

表示单独自旋空间耦合的 Jz 的本征态。

创建 JzKetCoupled 实例的参数是 jmjn 和一个可选的 jcoupling 参数。jm 选项是总角动量量子数,如用于普通状态(例如 JzKet)。

jn 中的另一个必需参数是一个元组,用于定义乘积空间的 \(j_n\) 角动量量子数。例如,如果一个状态表示乘积基态 \(\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle\) 的耦合,那么该状态的 jn 将是 (j1,j2)

最后一个选项是 jcoupling,用于定义由 jn 指定的空间如何耦合,这包括这些空间耦合在一起的顺序以及由此耦合产生的量子数。jcoupling 参数本身是一个列表的列表,使得每个子列表定义了自旋空间之间的一个单一耦合。如果有 N 个耦合的角动量空间,即 jn 有 N 个元素,那么必须有 N-1 个子列表。构成 jcoupling 参数的每个子列表的长度为 3。前两个元素是考虑耦合在一起的乘积空间的索引。例如,如果我们想要耦合 \(j_1\)\(j_4\),索引将是 1 和 4。如果一个状态已经被耦合,它通过耦合的最小索引引用,因此如果 \(j_2\)\(j_4\) 已经耦合到某个 \(j_{24}\),那么这个值可以通过引用索引 2 来耦合。子列表的最后一个元素是耦合状态的量子数。所以把所有东西放在一起,形成一个有效的 jcoupling 子列表,如果 \(j_1\)\(j_2\) 耦合到一个角动量空间,其量子数 \(j_{12}\) 的值为 j12,子列表将是 (1,2,j12)jcoupling 的列表中使用了 N-1 个这样的子列表。

注意 jcoupling 参数是可选的,如果未指定,则采用默认耦合。默认值是按顺序耦合空间,并将耦合的量子数取为最大值。例如,如果自旋空间是 \(j_1\), \(j_2\), \(j_3\), \(j_4\),那么默认耦合将 \(j_1\)\(j_2\) 耦合到 \(j_{12}=j_1+j_2\),然后,\(j_{12}\)\(j_3\) 耦合到 \(j_{123}=j_{12}+j_3\),最后 \(j_{123}\)\(j_4\) 耦合到 \(j=j_{123}+j_4\)。与此对应的 jcoupling 值是:

((1,2,j1+j2),(1,3,j1+j2+j3))

参数:
参数元组

必须传递的参数是 jmjnjcouplingj 值是总角动量。m 值是 Jz 自旋算符的本征值。jn 列表是耦合在一起的角动量空间的 j 值。jcoupling 参数是一个可选参数,定义空间如何耦合在一起。有关这些耦合参数的定义,请参见上述描述。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

coupled_jn
coupled_n
耦合
dual

返回此状态的对偶状态。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
j
jn
label

标签是对象的唯一标识符集。

m
operators

返回此状态是其本征态的算符。

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dual_class()

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

uncoupled_class

参见

JzKet

正常自旋本征态

uncouple

解耦耦合自旋态

couple

未耦合自旋态的耦合

示例

定义简单的自旋态,包括数值和符号:

>>> from sympy.physics.quantum.spin import JzKetCoupled
>>> from sympy import symbols
>>> JzKetCoupled(1, 0, (1, 1))
|1,0,j1=1,j2=1>
>>> j, m, j1, j2 = symbols('j m j1 j2')
>>> JzKetCoupled(j, m, (j1, j2))
|j,m,j1=j1,j2=j2>

定义超过两个耦合空间且具有不同耦合参数的耦合自旋态:

>>> JzKetCoupled(2, 1, (1, 1, 1))
|2,1,j1=1,j2=1,j3=1,j(1,2)=2>
>>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) )
|2,1,j1=1,j2=1,j3=1,j(1,2)=2>
>>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) )
|2,1,j1=1,j2=1,j3=1,j(2,3)=1>

用Jx算符的本征态重写JzKetCoupled:注意:结果的本征态是JxKetCoupled

>>> JzKetCoupled(1,1,(1,1)).rewrite("Jx")
|1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2

重写方法可以用于将耦合态转换为非耦合态。这是通过将 coupled=False 传递给重写函数来完成的:

>>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False)
-sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2

获取状态在 Jx 算符基元素方面的向量表示:

>>> from sympy.physics.quantum.represent import represent
>>> from sympy.physics.quantum.spin import Jx
>>> from sympy import S
>>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx)
Matrix([
[        0],
[      1/2],
[sqrt(2)/2],
[      1/2]])
class sympy.physics.quantum.spin.JzOp(*args, **kwargs)[源代码][源代码]

Jz 算符。

属性:
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
is_unitary
label

标签是对象的唯一标识符集。

名称

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

inv

反向

is_hypergeometric

矩阵元素

转置

class sympy.physics.quantum.spin.Rotation(*args, **kwargs)[源代码][源代码]

Wigner D 算符在欧拉角中的表示。

定义了旋转算子,根据z-y-z约定的欧拉角,用于被动变换。即,首先围绕z轴旋转坐标轴,得到新的x’-y’-z’轴。然后,这个新的坐标系围绕新的y’-轴旋转,得到新的x’’-y’’-z’’轴。然后,这个新的坐标系围绕z’’-轴旋转。约定遵循[R3f416aa2a284-1]_中列出的内容。

参数:
alpha数字, 符号

第一个欧拉角

beta数字, 符号

第二个欧拉角

gamma数字, 符号

第三个欧拉角

属性:
alpha
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

beta
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

gamma
希尔伯特空间
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_finite
is_hermitian
is_infinite
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_polar
is_symbolic
label

标签是对象的唯一标识符集。

方法

D(j, m, mp, alpha, beta, gamma)

Wigner D-函数。

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

d(j, m, mp, beta)

Wigner 小 d 函数。

default_args()

doit(**hints)

评估默认情况下不评估的对象,如极限、积分、求和和乘积。

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

inv

反向

is_hypergeometric

矩阵元素

转置

参见

WignerD

符号 Wigner-D 函数

D

Wigner-D 函数

d

Wigner 小-d 函数

参考文献

[1]

Varshalovich, D A, 《角动量的量子理论》。1988年。

示例

一个简单的旋转操作符示例:

>>> from sympy import pi
>>> from sympy.physics.quantum.spin import Rotation
>>> Rotation(pi, 0, pi/2)
R(pi,0,pi/2)

使用符号欧拉角和计算逆旋转算子:

>>> from sympy import symbols
>>> a, b, c = symbols('a b c')
>>> Rotation(a, b, c)
R(a,b,c)
>>> Rotation(a, b, c).inverse()
R(-c,-b,-a)
classmethod D(j, m, mp, alpha, beta, gamma)[源代码][源代码]

Wigner D-函数。

返回一个对应于由参数指定的Wigner-D函数的WignerD类实例。

参数:
j数字

总角动量

m数字

旋转后沿轴的角动量本征值

mp数字

旋转轴上的角动量本征值

alpha数字, 符号

旋转的第一个欧拉角

beta数字, 符号

旋转的第二个欧拉角

gamma数字, 符号

旋转的第三个欧拉角

参见

WignerD

符号 Wigner-D 函数

示例

返回定义旋转的Wigner-D矩阵元素,包括数值和符号形式:

>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi, symbols
>>> alpha, beta, gamma = symbols('alpha beta gamma')
>>> Rotation.D(1, 1, 0,pi, pi/2,-pi)
WignerD(1, 1, 0, pi, pi/2, -pi)
classmethod d(j, m, mp, beta)[源代码][源代码]

Wigner 小 d 函数。

返回一个 WignerD 类的实例,该实例对应于由指定参数定义的 Wigner-D 函数,其中 alpha 和 gamma 角度设为 0。

参数:
j数字

总角动量

m数字

旋转后沿轴的角动量本征值

mp数字

旋转轴上的角动量本征值

beta数字, 符号

旋转的第二个欧拉角

参见

WignerD

符号 Wigner-D 函数

示例

返回定义旋转的Wigner-D矩阵元素,包括数值和符号形式:

>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi, symbols
>>> beta = symbols('beta')
>>> Rotation.d(1, 1, 0, pi/2)
WignerD(1, 1, 0, 0, pi/2, 0)
class sympy.physics.quantum.spin.WignerD(*args, **hints)[源代码][源代码]

Wigner-D 函数

Wigner D-函数给出了旋转算符在jm表示中的矩阵元。对于欧拉角 \(\alpha\), \(\beta\), \(\gamma\),D-函数定义为:

\[<j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma)\]

旋转操作符的定义如 Rotation 类 [1] 所示。

以这种方式定义的Wigner D-函数给出:

\[D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma}\]

其中 d 是 Wigner 小 d 函数,由 Rotation.d 给出。

Wigner 小 d 函数给出了由第二个欧拉角确定的 Wigner D 函数的分量。即 Wigner D 函数为:

\[D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma}\]

其中 d 是小写 d 函数。Wigner D-函数由 Rotation.D 给出。

请注意,要评估 D-函数,j、m 和 mp 参数必须是整数或半整数。

参数:
j数字

总角动量

m数字

旋转后沿轴的角动量本征值

mp数字

旋转轴上的角动量本征值

alpha数字, 符号

旋转的第一个欧拉角

beta数字, 符号

旋转的第二个欧拉角

gamma数字, 符号

旋转的第三个欧拉角

属性:
alpha
args

返回 ‘self’ 的参数元组。

assumptions0

返回对象 \(type\) 假设。

beta
canonical_variables

返回一个字典,将 self.bound_symbols 中定义的任何变量映射到与表达式中任何自由符号不冲突的符号。

expr_free_symbols

类似于 free_symbols,但仅在自由符号包含在表达式节点中时返回它们。

free_symbols

从自身的原子中返回那些自由符号。

func

表达式中的顶级函数。

gamma
is_algebraic
is_antihermitian
is_comparable

如果 self 可以计算为一个具有精度的实数(或已经是一个实数),则返回 True,否则返回 False。

is_complex
is_composite
is_even
is_extended_negative
is_extended_nonnegative
is_extended_nonpositive
is_extended_nonzero
is_extended_positive
is_extended_real
is_finite
is_hermitian
is_imaginary
is_infinite
is_integer
is_irrational
is_negative
is_noninteger
is_nonnegative
is_nonpositive
is_nonzero
is_number

如果 self 没有自由符号且没有未定义的函数(确切地说,是 AppliedUndef),则返回 True。

is_odd
is_polar
is_positive
is_prime
is_rational
is_real
is_transcendental
is_zero
j
m
mp

方法

apart([x])

请参阅 sympy.polys 中的 apart 函数。

args_cnc([cset, warn, split_1])

返回 [交换因子, 非交换因子] 的自身。

as_coeff_Add([rational])

高效地提取求和的系数。

as_coeff_Mul([rational])

高效地提取乘积的系数。

as_coeff_add(*deps)

返回元组 (c, args),其中 self 被写成一个 Add,a

as_coeff_exponent(x)

c*x**e -> c,e 其中 x 可以是任何符号表达式。

as_coeff_mul(*deps, **kwargs)

返回元组 (c, args),其中 self 被写成一个 Mul,m

as_coefficient(expr)

提取给定表达式中的符号系数。

as_coefficients_dict(*syms)

返回一个字典,将术语映射到它们的 Rational 系数。

as_content_primitive([radical, clear])

此方法应递归地从所有参数中移除一个 Rational,并返回该内容和新的 self(原始类型)。

as_dummy()

返回表达式,其中任何具有结构绑定符号的对象都被替换为在其出现的对象中唯一的规范符号,并且仅对交换性具有默认假设为True。

as_expr(*gens)

将多项式转换为 SymPy 表达式。

as_independent(*deps, **hint)

将 Mul 或 Add 的大部分天真分离为不依赖于 deps 的参数。

as_leading_term(*symbols[, logx, cdir])

返回自身级数展开的主导(非零)项。

as_numer_denom()

返回一个表达式的分子和分母。

as_ordered_factors([order])

返回有序因子列表(如果是 Mul),否则返回 [self]。

as_ordered_terms([order, data])

将表达式转换为有序的项列表。

as_poly(*gens, **args)

self 转换为多项式,或返回 None

as_powers_dict()

将自身作为一个因子的字典返回,每个因子都被视为一个幂。

as_real_imag([deep])

对 'self' 执行复杂的扩展,并返回一个包含收集到的实部和虚部的元组。

as_terms()

将一个表达式转换为项的列表。

aseries([x, n, bound, hir])

自变量的渐近级数展开

atoms(*types)

返回构成当前对象的原子。

cancel(*gens, **args)

参见 sympy.polys 中的取消函数

class_key()

类的好顺序。

coeff(x[, n, right, _first])

返回包含 x**n 的项中的系数。

collect(syms[, func, evaluate, exact, ...])

请参阅 sympy.simplify 中的 collect 函数。

combsimp()

请参阅 sympy.simplify 中的 combsimp 函数。

compare(other)

如果对象在规范意义上小于、等于或大于其他对象,则返回 -1、0、1。

compute_leading_term(x[, logx])

已弃用的函数,用于计算级数的首项。

conjugate()

返回 'self' 的复数共轭。

could_extract_minus_sign()

如果 self 以 -1 作为前导因子,或在求和中有比正号更多的负号,则返回 True,否则返回 False。

count(query)

计算匹配的子表达式的数量。

count_ops([visual])

doit(**hints)

dummy_eq(other[, symbol])

比较两个表达式并处理哑符号。

equals(other[, failing_expression])

如果 self == other 则返回 True,如果不相等则返回 False,或者返回 None。

evalf([n, subs, maxn, chop, strict, quad, ...])

将给定的公式计算到 n 位精度。

expand([deep, modulus, power_base, ...])

使用提示扩展表达式。

extract_additively(c)

如果可以从自身减去 c 并且使所有匹配的系数趋向于零,则返回 self - c,否则返回 None。

extract_branch_factor([allow_half])

尝试以 exp_polar(2*pi*I*n)*z 的方式优雅地表达自身。

extract_multiplicatively(c)

如果无法以一种良好的方式将 self 表示为 c * something,即保留 self 参数的属性,则返回 None。

factor(*gens, **args)

参见 sympy.polys.polytools 中的 factor() 函数

find(query[, group])

查找所有匹配查询的子表达式。

fourier_series([limits])

计算自身的傅里叶正弦/余弦级数。

fps([x, x0, dir, hyper, order, rational, full])

计算自身的形式幂级数。

fromiter(args, **assumptions)

从可迭代对象创建一个新对象。

gammasimp()

参见 sympy.simplify 中的 gammasimp 函数

getO()

如果有加法 O(..) 符号,则返回该符号,否则返回 None。

getn()

返回表达式的顺序。

has(*patterns)

测试是否有任何子表达式匹配任何模式。

has_free(*patterns)

如果 self 包含对象 x 作为自由表达式,则返回 True,否则返回 False。

has_xfree(s)

如果 self 有 s 中的任何一个模式作为自由参数,则返回 True,否则返回 False。

integrate(*args, **kwargs)

请参阅 sympy.integrals 中的 integrate 函数。

invert(g, *gens, **args)

返回 selfg 的乘法逆元,其中 self``(和 ``g)可以是符号表达式。

is_algebraic_expr(*syms)

此测试给定的表达式是否在给定的符号 syms 中是代数的。

is_constant(*wrt, **flags)

如果 self 是常量则返回 True,如果不是则返回 False,如果无法明确确定常量性则返回 None。

is_meromorphic(x, a)

此测试表达式是否作为给定符号 x 的函数在点 a 处是亚纯的。

is_polynomial(*syms)

如果 self 是 syms 中的多项式,则返回 True,否则返回 False。

is_rational_function(*syms)

测试函数是否是给定符号 syms 中的两个多项式的比率。

is_same(b[, approx])

如果 a 和 b 结构相同则返回 True,否则返回 False。

leadterm(x[, logx, cdir])

返回前导项 a*x**b 作为元组 (a, b)。

limit(x, xlim[, dir])

计算极限 x->xlim。

lseries([x, x0, dir, logx, cdir])

用于生成序列项的迭代器的包装器。

match(pattern[, old])

模式匹配。

matches(expr[, repl_dict, old])

用于 match() 的辅助方法,用于在 self 中的通配符符号与 expr 中的表达式之间寻找匹配。

n([n, subs, maxn, chop, strict, quad, verbose])

将给定的公式计算到 n 位精度。

normal()

返回表达式为分数形式。

nseries([x, x0, n, dir, logx, cdir])

如果假设允许,则包装到 _eval_nseries,否则包装到 series。

nsimplify([constants, tolerance, full])

参见 sympy.simplify 中的 nsimplify 函数

powsimp(*args, **kwargs)

请参阅 sympy.simplify 中的 powsimp 函数

primitive()

返回可以从自身每个项中非递归提取的正有理数(即,将自身视为一个加法)。

radsimp(**kwargs)

参见 sympy.simplify 中的 radsimp 函数

ratsimp()

参见 sympy.simplify 中的 ratsimp 函数。

rcall(*args)

通过表达式树递归应用于参数。

refine([assumption])

请参阅 sympy.assumptions 中的 refine 函数。

removeO()

如果存在,移除加性的 O(..) 符号

replace(query, value[, map, simultaneous, exact])

self 中匹配的子表达式替换为 value

rewrite(*args[, deep])

使用定义的规则重写 self

round([n])

返回 x 四舍五入到给定的十进制位数。

separate([deep, force])

参见 sympy.simplify 中的单独函数

series([x, x0, n, dir, logx, cdir])

x = x0 附近对 "self" 进行级数展开,当 n=None 时逐项给出级数项(即惰性级数),否则当 n != None 时一次性给出所有项。

simplify(**kwargs)

请参阅 sympy.simplify 中的 simplify 函数。

sort_key([order])

subs(*args, **kwargs)

在简化参数后,在表达式中用新内容替换旧内容。

taylor_term(n, x, *previous_terms)

泰勒项的一般方法。

together(*args, **kwargs)

请参阅 sympy.polys 中的 together 函数。

trigsimp(**args)

参见 sympy.simplify 中的 trigsimp 函数

xreplace(rule)

替换表达式中对象的出现。

伴随

as_base_exp

复制

差异

目录

is_hypergeometric

转置

参见

Rotation

旋转操作符

参考文献

[1]

Varshalovich, D A, 《角动量的量子理论》。1988年。

示例

评估一个简单旋转的Wigner-D矩阵元素:

>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi
>>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0)
>>> rot
WignerD(1, 1, 0, pi, pi/2, 0)
>>> rot.doit()
sqrt(2)/2

评估简单旋转的Wigner-d矩阵元素

>>> rot = Rotation.d(1, 1, 0, pi/2)
>>> rot
WignerD(1, 1, 0, 0, pi/2, 0)
>>> rot.doit()
-sqrt(2)/2
sympy.physics.quantum.spin.couple(expr, jcoupling_list=None)[源代码][源代码]

耦合自旋态的张量积

此函数可用于耦合未耦合的自旋状态的张量积。所有要耦合的本征态必须是同一类。它将返回由Clebsch-Gordan角动量耦合系数确定的本征态的线性组合,这些本征态是CoupledSpinState的子类。

参数:
表达式表达式

涉及耦合自旋态的张量积表达式。每个态必须是SpinState的子类,并且它们都必须是同一类。

jcoupling_list列表或元组

此列表的元素是长度为2的子列表,指定自旋空间耦合的顺序。此列表的长度必须为N-1,其中N是待耦合的张量积中的状态数。此子列表的元素与``jcoupling``参数中为JzKetCoupled定义的每个子列表的前两个元素相同。如果未指定此参数,则采用默认值,该默认值首先耦合第一个和第二个乘积基空间,然后将此新耦合空间与第三个乘积空间耦合,依此类推。

示例

将两个空间的数值状态的张量积结合起来:

>>> from sympy.physics.quantum.spin import JzKet, couple
>>> from sympy.physics.quantum.tensorproduct import TensorProduct
>>> couple(TensorProduct(JzKet(1,0), JzKet(1,1)))
-sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2

使用默认耦合方法对三个空间进行数值耦合,即首先耦合第一和第二空间,然后这对空间再与第三空间耦合:

>>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)))
sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3

执行相同的耦合,但我们定义耦合首先耦合第一个和第三个空间:

>>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) )
sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3

将符号态的张量积耦合:

>>> from sympy import symbols
>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')
>>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2)))
Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2))
sympy.physics.quantum.spin.uncouple(expr, jn=None, jcoupling_list=None)[源代码][源代码]

解耦耦合自旋态

给出耦合自旋态的非耦合表示。参数必须是耦合自旋态的子类 CoupledSpinState 或自旋态的子类 SpinState 以及一个给出要耦合的空间的 j 值的数组。

参数:
表达式表达式

包含要耦合的状态的表达式。如果状态是 SpinState 的子类,则必须定义 jnjcoupling 参数。如果状态是 CoupledSpinState 的子类,jnjcoupling 将从状态中获取。

jn列表或元组

耦合的 j 值列表。如果 state 是 CoupledSpinState,则忽略此参数。如果 state 不是 CoupledSpinState 的子类,则必须定义此参数。此参数的语法与 JzKetCoupled 的 jn 参数相同。

jcoupling_list列表或元组

定义 j 值如何耦合在一起的列表。如果 state 是一个 CoupledSpinState,则忽略此参数。如果 state 不是 CoupledSpinState 的子类,则必须定义此参数。此参数的语法与 JzKetCoupled 的 jcoupling 参数相同。

示例

使用 CoupledSpinState 状态解耦一个数值状态:

>>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple
>>> from sympy import S
>>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2)))
sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2

使用 SpinState 状态执行相同的计算:

>>> from sympy.physics.quantum.spin import JzKet
>>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2))
sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2

使用 CoupledSpinState 状态解耦三个耦合空间的一个数值状态:

>>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) ))
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2

使用 SpinState 状态执行相同的计算:

>>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) )
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2

使用 CoupledSpinState 状态解耦一个符号状态:

>>> from sympy import symbols
>>> j,m,j1,j2 = symbols('j m j1 j2')
>>> uncouple(JzKetCoupled(j, m, (j1, j2)))
Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))

使用 SpinState 状态执行相同的计算

>>> uncouple(JzKet(j, m), (j1, j2))
Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))