Source code for sympy.geometry.curve

"""Curves in 2-dimensional Euclidean space.

Contains
========
Curve

"""

from sympy.functions.elementary.miscellaneous import sqrt
from sympy.core import diff
from sympy.core.containers import Tuple
from sympy.core.symbol import _symbol
from sympy.geometry.entity import GeometryEntity, GeometrySet
from sympy.geometry.point import Point
from sympy.integrals import integrate
from sympy.matrices import Matrix, rot_axis3
from sympy.utilities.iterables import is_sequence

from mpmath.libmp.libmpf import prec_to_dps


[docs] class Curve(GeometrySet): """A curve in space. A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value. Parameters ========== function : list of functions limits : 3-tuple Function parameter and lower and upper bounds. Attributes ========== functions parameter limits Raises ====== ValueError When `functions` are specified incorrectly. When `limits` are specified incorrectly. Examples ======== >>> from sympy import Curve, sin, cos, interpolate >>> from sympy.abc import t, a >>> C = Curve((sin(t), cos(t)), (t, 0, 2)) >>> C.functions (sin(t), cos(t)) >>> C.limits (t, 0, 2) >>> C.parameter t >>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C Curve((t, t**2), (t, 0, 1)) >>> C.subs(t, 4) Point2D(4, 16) >>> C.arbitrary_point(a) Point2D(a, a**2) See Also ======== sympy.core.function.Function sympy.polys.polyfuncs.interpolate """ def __new__(cls, function, limits): if not is_sequence(function) or len(function) != 2: raise ValueError("Function argument should be (x(t), y(t)) " "but got %s" % str(function)) if not is_sequence(limits) or len(limits) != 3: raise ValueError("Limit argument should be (t, tmin, tmax) " "but got %s" % str(limits)) return GeometryEntity.__new__(cls, Tuple(*function), Tuple(*limits)) def __call__(self, f): return self.subs(self.parameter, f) def _eval_subs(self, old, new): if old == self.parameter: return Point(*[f.subs(old, new) for f in self.functions]) def _eval_evalf(self, prec=15, **options): f, (t, a, b) = self.args dps = prec_to_dps(prec) f = tuple([i.evalf(n=dps, **options) for i in f]) a, b = [i.evalf(n=dps, **options) for i in (a, b)] return self.func(f, (t, a, b))
[docs] def arbitrary_point(self, parameter='t'): """A parameterized point on the curve. Parameters ========== parameter : str or Symbol, optional Default value is 't'. The Curve's parameter is selected with None or self.parameter otherwise the provided symbol is used. Returns ======= Point : Returns a point in parametric form. Raises ====== ValueError When `parameter` already appears in the functions. Examples ======== >>> from sympy import Curve, Symbol >>> from sympy.abc import s >>> C = Curve([2*s, s**2], (s, 0, 2)) >>> C.arbitrary_point() Point2D(2*t, t**2) >>> C.arbitrary_point(C.parameter) Point2D(2*s, s**2) >>> C.arbitrary_point(None) Point2D(2*s, s**2) >>> C.arbitrary_point(Symbol('a')) Point2D(2*a, a**2) See Also ======== sympy.geometry.point.Point """ if parameter is None: return Point(*self.functions) tnew = _symbol(parameter, self.parameter, real=True) t = self.parameter if (tnew.name != t.name and tnew.name in (f.name for f in self.free_symbols)): raise ValueError('Symbol %s already appears in object ' 'and cannot be used as a parameter.' % tnew.name) return Point(*[w.subs(t, tnew) for w in self.functions])
@property def free_symbols(self): """Return a set of symbols other than the bound symbols used to parametrically define the Curve. Returns ======= set : Set of all non-parameterized symbols. Examples ======== >>> from sympy.abc import t, a >>> from sympy import Curve >>> Curve((t, t**2), (t, 0, 2)).free_symbols set() >>> Curve((t, t**2), (t, a, 2)).free_symbols {a} """ free = set() for a in self.functions + self.limits[1:]: free |= a.free_symbols free = free.difference({self.parameter}) return free @property def ambient_dimension(self): """The dimension of the curve. Returns ======= int : the dimension of curve. Examples ======== >>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve((t, t**2), (t, 0, 2)) >>> C.ambient_dimension 2 """ return len(self.args[0]) @property def functions(self): """The functions specifying the curve. Returns ======= functions : list of parameterized coordinate functions. Examples ======== >>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve((t, t**2), (t, 0, 2)) >>> C.functions (t, t**2) See Also ======== parameter """ return self.args[0] @property def limits(self): """The limits for the curve. Returns ======= limits : tuple Contains parameter and lower and upper limits. Examples ======== >>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve([t, t**3], (t, -2, 2)) >>> C.limits (t, -2, 2) See Also ======== plot_interval """ return self.args[1] @property def parameter(self): """The curve function variable. Returns ======= Symbol : returns a bound symbol. Examples ======== >>> from sympy.abc import t >>> from sympy import Curve >>> C = Curve([t, t**2], (t, 0, 2)) >>> C.parameter t See Also ======== functions """ return self.args[1][0] @property def length(self): """The curve length. Examples ======== >>> from sympy import Curve >>> from sympy.abc import t >>> Curve((t, t), (t, 0, 1)).length sqrt(2) """ integrand = sqrt(sum(diff(func, self.limits[0])**2 for func in self.functions)) return integrate(integrand, self.limits)
[docs] def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the curve. Parameters ========== parameter : str or Symbol, optional Default value is 't'; otherwise the provided symbol is used. Returns ======= List : the plot interval as below: [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Curve, sin >>> from sympy.abc import x, s >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval() [t, 1, 2] >>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s) [s, 1, 2] See Also ======== limits : Returns limits of the parameter interval """ t = _symbol(parameter, self.parameter, real=True) return [t] + list(self.limits[1:])
[docs] def rotate(self, angle=0, pt=None): """This function is used to rotate a curve along given point ``pt`` at given angle(in radian). Parameters ========== angle : the angle at which the curve will be rotated(in radian) in counterclockwise direction. default value of angle is 0. pt : Point the point along which the curve will be rotated. If no point given, the curve will be rotated around origin. Returns ======= Curve : returns a curve rotated at given angle along given point. Examples ======== >>> from sympy import Curve, pi >>> from sympy.abc import x >>> Curve((x, x), (x, 0, 1)).rotate(pi/2) Curve((-x, x), (x, 0, 1)) """ if pt: pt = -Point(pt, dim=2) else: pt = Point(0,0) rv = self.translate(*pt.args) f = list(rv.functions) f.append(0) f = Matrix(1, 3, f) f *= rot_axis3(angle) rv = self.func(f[0, :2].tolist()[0], self.limits) pt = -pt return rv.translate(*pt.args)
[docs] def scale(self, x=1, y=1, pt=None): """Override GeometryEntity.scale since Curve is not made up of Points. Returns ======= Curve : returns scaled curve. Examples ======== >>> from sympy import Curve >>> from sympy.abc import x >>> Curve((x, x), (x, 0, 1)).scale(2) Curve((2*x, x), (x, 0, 1)) """ if pt: pt = Point(pt, dim=2) return self.translate(*(-pt).args).scale(x, y).translate(*pt.args) fx, fy = self.functions return self.func((fx*x, fy*y), self.limits)
[docs] def translate(self, x=0, y=0): """Translate the Curve by (x, y). Returns ======= Curve : returns a translated curve. Examples ======== >>> from sympy import Curve >>> from sympy.abc import x >>> Curve((x, x), (x, 0, 1)).translate(1, 2) Curve((x + 1, x + 2), (x, 0, 1)) """ fx, fy = self.functions return self.func((fx + x, fy + y), self.limits)