Source code for sympy.physics.mechanics.rigidbody

from sympy import Symbol, S
from sympy.physics.vector import ReferenceFrame, Dyadic, Point, dot
from sympy.physics.mechanics.body_base import BodyBase
from sympy.physics.mechanics.inertia import inertia_of_point_mass, Inertia
from sympy.utilities.exceptions import sympy_deprecation_warning

__all__ = ['RigidBody']


[docs] class RigidBody(BodyBase): """An idealized rigid body. Explanation =========== This is essentially a container which holds the various components which describe a rigid body: a name, mass, center of mass, reference frame, and inertia. All of these need to be supplied on creation, but can be changed afterwards. Attributes ========== name : string The body's name. masscenter : Point The point which represents the center of mass of the rigid body. frame : ReferenceFrame The ReferenceFrame which the rigid body is fixed in. mass : Sympifyable The body's mass. inertia : (Dyadic, Point) The body's inertia about a point; stored in a tuple as shown above. potential_energy : Sympifyable The potential energy of the RigidBody. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody >>> from sympy.physics.mechanics import outer >>> m = Symbol('m') >>> A = ReferenceFrame('A') >>> P = Point('P') >>> I = outer (A.x, A.x) >>> inertia_tuple = (I, P) >>> B = RigidBody('B', P, A, m, inertia_tuple) >>> # Or you could change them afterwards >>> m2 = Symbol('m2') >>> B.mass = m2 """ def __init__(self, name, masscenter=None, frame=None, mass=None, inertia=None): super().__init__(name, masscenter, mass) if frame is None: frame = ReferenceFrame(f'{name}_frame') self.frame = frame if inertia is None: ixx = Symbol(f'{name}_ixx') iyy = Symbol(f'{name}_iyy') izz = Symbol(f'{name}_izz') izx = Symbol(f'{name}_izx') ixy = Symbol(f'{name}_ixy') iyz = Symbol(f'{name}_iyz') inertia = Inertia.from_inertia_scalars(self.masscenter, self.frame, ixx, iyy, izz, ixy, iyz, izx) self.inertia = inertia def __repr__(self): return (f'{self.__class__.__name__}({repr(self.name)}, masscenter=' f'{repr(self.masscenter)}, frame={repr(self.frame)}, mass=' f'{repr(self.mass)}, inertia={repr(self.inertia)})') @property def frame(self): """The ReferenceFrame fixed to the body.""" return self._frame @frame.setter def frame(self, F): if not isinstance(F, ReferenceFrame): raise TypeError("RigidBody frame must be a ReferenceFrame object.") self._frame = F @property def x(self): """The basis Vector for the body, in the x direction. """ return self.frame.x @property def y(self): """The basis Vector for the body, in the y direction. """ return self.frame.y @property def z(self): """The basis Vector for the body, in the z direction. """ return self.frame.z @property def inertia(self): """The body's inertia about a point; stored as (Dyadic, Point).""" return self._inertia @inertia.setter def inertia(self, I): # check if I is of the form (Dyadic, Point) if len(I) != 2 or not isinstance(I[0], Dyadic) or not isinstance(I[1], Point): raise TypeError("RigidBody inertia must be a tuple of the form (Dyadic, Point).") self._inertia = Inertia(I[0], I[1]) # have I S/O, want I S/S* # I S/O = I S/S* + I S*/O; I S/S* = I S/O - I S*/O # I_S/S* = I_S/O - I_S*/O I_Ss_O = inertia_of_point_mass(self.mass, self.masscenter.pos_from(I[1]), self.frame) self._central_inertia = I[0] - I_Ss_O @property def central_inertia(self): """The body's central inertia dyadic.""" return self._central_inertia @central_inertia.setter def central_inertia(self, I): if not isinstance(I, Dyadic): raise TypeError("RigidBody inertia must be a Dyadic object.") self.inertia = Inertia(I, self.masscenter)
[docs] def linear_momentum(self, frame): """ Linear momentum of the rigid body. Explanation =========== The linear momentum L, of a rigid body B, with respect to frame N is given by: ``L = m * v`` where m is the mass of the rigid body, and v is the velocity of the mass center of B in the frame N. Parameters ========== frame : ReferenceFrame The frame in which linear momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer >>> from sympy.physics.mechanics import RigidBody, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> m, v = dynamicsymbols('m v') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, v * N.x) >>> I = outer (N.x, N.x) >>> Inertia_tuple = (I, P) >>> B = RigidBody('B', P, N, m, Inertia_tuple) >>> B.linear_momentum(N) m*v*N.x """ return self.mass * self.masscenter.vel(frame)
[docs] def angular_momentum(self, point, frame): """Returns the angular momentum of the rigid body about a point in the given frame. Explanation =========== The angular momentum H of a rigid body B about some point O in a frame N is given by: ``H = dot(I, w) + cross(r, m * v)`` where I and m are the central inertia dyadic and mass of rigid body B, w is the angular velocity of body B in the frame N, r is the position vector from point O to the mass center of B, and v is the velocity of the mass center in the frame N. Parameters ========== point : Point The point about which angular momentum is desired. frame : ReferenceFrame The frame in which angular momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer >>> from sympy.physics.mechanics import RigidBody, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> m, v, r, omega = dynamicsymbols('m v r omega') >>> N = ReferenceFrame('N') >>> b = ReferenceFrame('b') >>> b.set_ang_vel(N, omega * b.x) >>> P = Point('P') >>> P.set_vel(N, 1 * N.x) >>> I = outer(b.x, b.x) >>> B = RigidBody('B', P, b, m, (I, P)) >>> B.angular_momentum(P, N) omega*b.x """ I = self.central_inertia w = self.frame.ang_vel_in(frame) m = self.mass r = self.masscenter.pos_from(point) v = self.masscenter.vel(frame) return I.dot(w) + r.cross(m * v)
[docs] def kinetic_energy(self, frame): """Kinetic energy of the rigid body. Explanation =========== The kinetic energy, T, of a rigid body, B, is given by: ``T = 1/2 * (dot(dot(I, w), w) + dot(m * v, v))`` where I and m are the central inertia dyadic and mass of rigid body B respectively, w is the body's angular velocity, and v is the velocity of the body's mass center in the supplied ReferenceFrame. Parameters ========== frame : ReferenceFrame The RigidBody's angular velocity and the velocity of it's mass center are typically defined with respect to an inertial frame but any relevant frame in which the velocities are known can be supplied. Examples ======== >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer >>> from sympy.physics.mechanics import RigidBody >>> from sympy import symbols >>> m, v, r, omega = symbols('m v r omega') >>> N = ReferenceFrame('N') >>> b = ReferenceFrame('b') >>> b.set_ang_vel(N, omega * b.x) >>> P = Point('P') >>> P.set_vel(N, v * N.x) >>> I = outer (b.x, b.x) >>> inertia_tuple = (I, P) >>> B = RigidBody('B', P, b, m, inertia_tuple) >>> B.kinetic_energy(N) m*v**2/2 + omega**2/2 """ rotational_KE = S.Half * dot( self.frame.ang_vel_in(frame), dot(self.central_inertia, self.frame.ang_vel_in(frame))) translational_KE = S.Half * self.mass * dot(self.masscenter.vel(frame), self.masscenter.vel(frame)) return rotational_KE + translational_KE
def set_potential_energy(self, scalar): sympy_deprecation_warning( """ The sympy.physics.mechanics.RigidBody.set_potential_energy() method is deprecated. Instead use B.potential_energy = scalar """, deprecated_since_version="1.5", active_deprecations_target="deprecated-set-potential-energy", ) self.potential_energy = scalar
[docs] def parallel_axis(self, point, frame=None): """Returns the inertia dyadic of the body with respect to another point. Parameters ========== point : sympy.physics.vector.Point The point to express the inertia dyadic about. frame : sympy.physics.vector.ReferenceFrame The reference frame used to construct the dyadic. Returns ======= inertia : sympy.physics.vector.Dyadic The inertia dyadic of the rigid body expressed about the provided point. """ if frame is None: frame = self.frame return self.central_inertia + inertia_of_point_mass( self.mass, self.masscenter.pos_from(point), frame)