Source code for sympy.polys.domains.gmpyrationalfield

"""Implementation of :class:`GMPYRationalField` class. """


from sympy.polys.domains.groundtypes import (
    GMPYRational, SymPyRational,
    gmpy_numer, gmpy_denom, factorial as gmpy_factorial,
)
from sympy.polys.domains.rationalfield import RationalField
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public

[docs] @public class GMPYRationalField(RationalField): """Rational field based on GMPY's ``mpq`` type. This will be the implementation of :ref:`QQ` if ``gmpy`` or ``gmpy2`` is installed. Elements will be of type ``gmpy.mpq``. """ dtype = GMPYRational zero = dtype(0) one = dtype(1) tp = type(one) alias = 'QQ_gmpy' def __init__(self): pass
[docs] def get_ring(self): """Returns ring associated with ``self``. """ from sympy.polys.domains import GMPYIntegerRing return GMPYIntegerRing()
[docs] def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return SymPyRational(int(gmpy_numer(a)), int(gmpy_denom(a)))
[docs] def from_sympy(self, a): """Convert SymPy's Integer to ``dtype``. """ if a.is_Rational: return GMPYRational(a.p, a.q) elif a.is_Float: from sympy.polys.domains import RR return GMPYRational(*map(int, RR.to_rational(a))) else: raise CoercionFailed("expected ``Rational`` object, got %s" % a)
[docs] def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return GMPYRational(a)
[docs] def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return GMPYRational(a.numerator, a.denominator)
[docs] def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return GMPYRational(a)
[docs] def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return a
[docs] def from_GaussianRationalField(K1, a, K0): """Convert a ``GaussianElement`` object to ``dtype``. """ if a.y == 0: return GMPYRational(a.x)
[docs] def from_RealField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return GMPYRational(*map(int, K0.to_rational(a)))
[docs] def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """ return GMPYRational(a) / GMPYRational(b)
[docs] def quo(self, a, b): """Quotient of ``a`` and ``b``, implies ``__truediv__``. """ return GMPYRational(a) / GMPYRational(b)
[docs] def rem(self, a, b): """Remainder of ``a`` and ``b``, implies nothing. """ return self.zero
[docs] def div(self, a, b): """Division of ``a`` and ``b``, implies ``__truediv__``. """ return GMPYRational(a) / GMPYRational(b), self.zero
[docs] def numer(self, a): """Returns numerator of ``a``. """ return a.numerator
[docs] def denom(self, a): """Returns denominator of ``a``. """ return a.denominator
[docs] def factorial(self, a): """Returns factorial of ``a``. """ return GMPYRational(gmpy_factorial(int(a)))